Эффективность структуры выпуска продукции
Предположим, что достигнуты эффективность в распределении благ между потребителями и эффективность в производстве.
Структура выпуска продукции несколькими фирмами называется эффективной, если невозможно увеличить благосостояние хотя бы одной из них, не уменьшая благосостояния других, путем изменения комбинации (структуры) выпускаемой продукции.
Построим на основе рис. 10-3 границу производственных возможностей. На рис. 10-4 по горизонтальной оси 0Х отложим объем производства товара X, по вертикальной оси 0Y— товара Y. Каждая из точек на контрактной линии (см. рис. 10-3) является точкой касания двух изоквант. Так, точке R соответствует точка касания изоквант при Х = 70, а Y = 50. Соответствующую точку отметим на рис. 10-4. Точка S является точкой касания изоквант при Х = 80, а Y = 35. Соответственно и ее нанесем на рис. 10-4 и т.д. Таким образом можно получить всю границу производственных возможностей LTRSK. Фигура, ограниченная этой кривой, есть множество производственных возможностей. Любая комбинация объемов Х и Y, принадлежащая этому множеству, достижима. При этом состояние экономики не является эффективным в производстве.
A |
C |
K |
S |
R |
T |
Y |
X |
L |
Граница производственных возможностей, изображенная на рис. 10-4, выпукла вправо вверх. Это объясняется тем, что одни ресурсы более производительны при производстве одного продукта, а другие ресурсы, соответственно, при производстве другого. Перемещаясь по границе производственных возможностей вправо вниз и изменяя структуру выпуска, увеличивая производство X, приходится вовлекать в производство товара X ресурсы все более неэффективные в производстве данного товара и относительно эффективные в производстве товара Y.
Рис. 10-4. Граница производственных возможностей |
Предельная норма продуктовой трансформации
Введем понятиепредельной нормы продуктовой трансформации (MRPTxy).
Предельная норма продуктовой трансформации показывает, каким количеством товара Y следует пожертвовать для производства одной дополнительной единицы товара X при полном и эффективном использовании всех ресурсов.
Геометрически MRPTXY представляет собой тангенс угла наклона касательной к границе производственных возможностей, взятый с противоположным знаком. (Проведенная через точку R касательная на рис. 10-4 и характеризует MRPT.) Предположим, что в точке R величина MRPTXY = 1,2.
Теперь сделаем еще один шаг: наложим на множество производственных возможностей коробку Эджуорта для двух потребителей таким образом, чтобы совместить начало координат для Трифона с точкой 0, а начало координат для Федора с точкой R. Кривая 0R представляет собой контрактную линию. Рассмотрим распределение двух благ между потребителями, соответствующее точке С. Это распределение принадлежит контрактной линии. Находясь в этой точке, Трифон из общего количества в 70 единиц блага X получает 30 единиц блага X, а Федор — 40. Из общего количества блага Y в 50 единиц Трифон получает 30 единиц, а Федор — 20. Как было уже сказано, все точки, принадлежащие контрактной линии, являются точками касания двух кривых безразличия этих потребителей, и при этом предельные нормы замены у них равны. Предположим, что в точке С предельные нормы замены для двух кривых безразличия равны 0,6:
Из рисунка видно, что касательная к кривой безразличия, проведенная через точку С, имеет меньший наклон, чем касательная к границе производственных возможностей, которая проведена через точку R.
Таким образом, при объемах производства, соответствующих точке R, и при распределении данной продукции между потребителями, соответствующем точке С, достигается как эффективность в производстве, так и эффективность в распределении. Однако достигается ли при этом Парето-оптимальное состояние? Ответ: нет. Для доказательства этого зафиксируем количество товаров Х и Y, потребляемое Федором. Далее, сократим произвол- ство X на единицу. Поскольку MRPTxy = 1,2, то это позволит увеличить производство Y на 1,2 единицы. А поскольку MRSxy = 0,6, то Трифон согласится в обмен на сокращение продукта X на единицу получить дополнительно только 0,6 единиц продукта Y. Его благосостояние при этом не изменится. Если же он получит 1,2 единицы блага Y, его благосостояние повысится. Следовательно, если предельная норма продуктовой трансформации не равна предельной норме замены какого-либо из потребителей, то можно увеличить благосостояние одного из них, не ухудшая положения другого, с помощью изменения структуры выпуска данной продукции. Для данной ситуации это можно сделать, сокращая объем производства блага Х и увеличивая объем производства Y, т.е. двигаясь по границе производственных возможностей.
Таким образом, необходимым условием эффективности структуры выпуска продукции, а также Парето-оптимальности является равенство:
Поскольку у разных потребителей различные предпочтения благ, то весьма трудно определить, сколько благ нужно произвести и сколько дать каждому потребителю, чтобы у всех была одинаковая MRS?. Для этого нужны значительные информационные и материально-технические затраты. Данную проблему проще решить следующим образом.
Если рынки благ являются совершенно конкурентными, все потребители распределят свой бюджет так, чтобы предельные нормы замены по товарам равнялись отношению цен:
В то же время каждая фирма, максимизирующая прибыль, будет продолжать выпуск до тех пор, пока цена не сравняется с предельными издержками, т.е. Рх = МСх и PY = МСY. Следовательно:
Таким образом, мы показали, что в условиях общего конкурентного равновесия, т.е. равновесия на всех рынках в условиях совершенной конкуренции, выполняется эффективность в обмене, эффективность в производстве и эффективность структуры выпуска.