Лекция . Управление производством . Управление запасами

С течением времени любое оборудование изнашивается физически и морально, поэтому на каком-то этапе его эксплуатация становится менее выгодной, нежели приобретение и использование нового оборудования.

Поэтому возникает задача наиболее подходящего момента замены оборудования.

7. 1 Задача о замене оборудования.

Рассмотрим задачу о замене оборудования на следующем

ПРИМЕРЕ:

В начале планового периода продолжительностью N = 4 года имеется оборудование, возраст которого t, причем оборудование не должно быть старше 6 лет (примем t = 2 года).

ИЗВЕСТНЫ:

- r(t) - стоимость продукции, произведенной в течение каждого года планового периода с помощью этого оборудования;

- U(t) - ежегодные затраты, связанные с эксплуатацией оборудования (эти характеристики зависят от возраста оборудования;

- s - остаточная стоимость оборудования (принимаем s = 4 д.ед.), не зависящая от его возраста;

- р - стоимость нового оборудования, включающая расходы, связанные с установкой, наладкой, запуском оборудования и не меняющаяся в данном плановом периоде (р = 13 д.ед.)

ТРЕБУЕТСЯ:

Разработать оптимальную политику в отношении имеющегося оборудования, т.е. на начало каждого года планового периода установить, сохранить в этом году оборудование или продать его по остаточной стоимости s, или купить новое оборудование, чтобы ожидаемая прибыль за N лет достигла максимальной величины.

1. Составить матрицу максимальных прибылей Fn(t) за 4 года;

2.Сформулировать по матрице максимальных прибылей оптимальные стратегии замены оборудования возрастов t1 и t2 лет в плановом периоде, продолжительностью 4 и 3 года.

Таблица соответствия стоимости продукции и затрат от возраста

Возраст t
Ст.продукции r(t)
Ст.расходов u(t)

РЕШЕНИЕ:

Математическая модель задачи:

Z = ΣFi(xi)→max

Лекция . Управление производством . Управление запасами - student2.ru

сохранить

xi - управление

заменить

Экономический смысл переменных:

N - плановый период эксплуатации оборудования;

ZC - прибыль в случае сохранения оборудования;

ZЗ - прибыль в случае замены оборудования;

S0 - первоначальное состояние системы;

SHi - предполагаемый возраст оборудования в начале i-го периода, т.е. после того, как мы примем решение сохранить или заменить его;

Si - возраст в конце i-го периода;

r(t) - прибыль от эксплуатации;

u(t) - расходы на эксплуатацию;

s - остаточная стоимость оборудования;

p - стоимость нового оборудования;

t - возраст оборудования;

fi - доход на i-ом шаге;

Fi - максимальный доход на i-ом шаге.

Прибыль, если в начале года выбрано управление «сохранение» оборудования:

Zc = r(t) - u(t)

Прибыль в случае «замены»:

ZЗ = s - p + r(0) - u(0)

Состояние системы (S) характеризуется возрастом оборудования

t = 0, 1, …. Значение t = 0 соответствует новому оборудованию.

В формулах максимальная прибыль на очередном шаге определяется с учетом всех возможных состояний системы, в которых она может находиться сразу после принятия решения в начале данного года.

Основное функциональное уравнение на последнем N-ом шаге:

FN(SN-1, xN) = max ZN(SN-1, xN)

При произвольном шаге (i<N) основное функциональное уравнение принимает вид

Fi(Si-1, xN) = max {Zi(SHi, xi) + Fi+1(Si)}

Прибыль на i-ом шаге будет определяться следующей парой формул:

- при управлении «сохранение»

Fi(SHi, xi) = r(Si, xi) - u(SHi)

- при управлении «замена»

Zi(SHi, xi) = s - p + r(0) - u(0)

Для нашего примера расчет начинается с последнего, четвертого года планового периода:

F4(S3, x4) = max Z4(SH3, x4)

при этом:

- в случае «сохранения» оборудования:

Z4(SH4, x4) = r(SH4) - u(SH4)

- в случае «замены»:

Z4(SH4, x4) = 4 - 13 + 27 - 15 = 3

Составляется 1-ая таблица, рассматриваемая все возможные НАЧАЛЬНЫЕ состояния оборудования, т.е. его возраст S3 = 1 - 6 лет, начиная с конца - последнего шага.

Таблица 1. F4(S3, x4) = max Z4(SH3, x4)

Шаг 4

Возраст S3 в конце 3-го шага Управление x4 Предполагаемый возраст SH4 в начале 4-го шага   Прибыль Z4 Max доход на F4 шаге
  Сохранение  
Замена
  Сохранение
Замена
  Сохранение
Замена
  Сохранение
Замена
Сохранение
Замена
  Сохранение
Замена

Анализ таблицы показывает, что заменять оборудование выгодно только в том случае, если его возраст уже равен 6 годам, т.е. по условиям оборудование нельзя использовать далее.

Теперь анализируем ситуацию перед третьим годом исследуемого периода.

F3(S2, x4) = max {Z3(SH3, x3) + F4(S3)}

при этом:

- в случае «сохранения оборудования»

Z3(SH3, x3) = r(SH3) - u(SH3)

- в случае «замены»

Z3(SH3, x3) = 4 - 13 + 27 - 15 = 3

Следует оптимизировать расходы за последний и предпоследний годы (за двухлетний период).

Оптимальная прибыль за 4-ый год берется из таблицы 1.

Учтем, что SH2 - возраст оборудования в начале третьего года сразу после принятия решения о его «сохранении» или «замене»;

S3 - возраст оборудования к концу третьего года.

Данные в колонку F4 переносятся из предыдущей таблице в соответствии со значением параметра S3.

Таблица 2.F3(S2, x4) = max {Z3(SH3, x3) + F4(S3)} Шаг 3

  S1   x3   SH2 Z3 из таблицы 1 Возраст S3 в конце 3 шага   F4   Z3 + F4   F3
  Сохранение  
Замена
  Сохранение
Замена
  Сохранение
Замена
  +4 Сохранение
Замена
  Сохранение
Замена
  Сохранение - - -
Замена

Также проводится условная оптимизация на начало второго года (шаг 2) и составляется таблица 3.

Таблица 3. F2 (S1,x4) = max {Z2(SH2, x2) + F3(S2)} Шаг 2

S1 x2 SH1 Z2 S2 F3 Z2 + F3 F2
Сохранение  
Замена
  Сохранение
Замена
Сохранение
Замена
  Сохранение
Замена
  Сохранение
Замена
  Сохранение - - -
Замена

Также проводится условная оптимизация на начало первого года (шаг 1) и составляется таблица 4, которая завершает условную оптимизацию.

Таблица 4.F1 (S0, x4) = max {Z1(SH1, x1) + F2(S1)}Шаг 1

S1 x2 SH1 Z2 S2 F3 Z2 + F3 F2
  Сохранение  
Замена
  Сохранение
Замена
  Сохранение
Замена
  Сохранение
Замена
  Сохранение
Замена
  Сохранение - - -
Замена

С помощью таблиц условной оптимизации можно сформулировать оптимальную политику в отношении оборудования любого возраста не старше 6 лет в течение 4-х летнего периода.

Для наглядности основные результаты, содержащиеся в последних столбцах четырех последних построенных таблиц, оформляются в виде сводной таблицы, которая называется матрицей максимальных прибылей, и выделяются элементы, ниже которых расположены показатели суммарной прибыли, соответствующие выбору управления «ЗАМЕНА».

Элементы, расположенные выше линии выделения, находятся в области «СОХРАНЕНИЯ» оборудования.

Матрица максимальных прибылей

t ГОДЫ
1-4 2-4 3-4
Лекция . Управление производством . Управление запасами - student2.ru 0 Лекция . Управление производством . Управление запасами - student2.ru Лекция . Управление производством . Управление запасами - student2.ru - - -
Лекция . Управление производством . Управление запасами - student2.ru 21
Лекция . Управление производством . Управление запасами - student2.ru 2 Лекция . Управление производством . Управление запасами - student2.ru 34 10
24
33
14
3

Сформулируем оптимальную политику в отношении оборудования, возраст которого 2 года.

В матрице прибылей для t = 2 в первой колонке стоит суммарная прибыль 34 д.ед. за четыре года, при этом выбор управления «СОХРАНЕНИЕ».

К началу второго года возраст оборудования составит 3 года, поэтому в следующей колонке выбирается строка, соответствующая возрасту 3 года.

Оптимальная прибыль за второй - четвертый годы - 24 д.ед., и мы находимся в области «ЗАМЕНЫ» оборудования, следовательно, к началу 3-го года оборудование будет иметь возраст 1 год.

Прибыль за третий - четвертый годы для такого оборудования равна

21 д.ед., за последний четвертый год - 10 д.ед. (при возрасте t = 2).

ВЫВОД: рекомендуется замена оборудования в начале 2-го года

Эксплуатации.

Наши рекомендации