Б. Точечная и дуговая эластичность

Как уже говорилось, коэффициент прямой эластичности спроса по цене исчисляется по формуле:

Б. Точечная и дуговая эластичность - student2.ru

Поскольку процентное изменение спроса исчисляется по формуле:

Б. Точечная и дуговая эластичность - student2.ru ,

где q – начальное значение спроса, Δq – изменение спроса в штуках,

а процентное изменение цены – по формуле:

Б. Точечная и дуговая эластичность - student2.ru ,

где P – начальное значение цены, ΔP – изменение цены в рублях,

то:

Б. Точечная и дуговая эластичность - student2.ru

Эластичность в точке

Из последней формулы видно, что эластичность зависит, как от начальных значений цены (P) и спроса (q), так и от их изменений (ΔP и Δq). Взяв за основу те или иные значения цены и спроса, получаем эластичность в данной точке (точечную эластичность).

Пусть известны две пары значений цены и спроса в двух точках на кривой спроса:

  P q
т. А
т. В

Если мы исходим из того, что начальные значения цены и спроса составляют: P=10, q=50, то эластичность в точке А равна:

Б. Точечная и дуговая эластичность - student2.ru

Данный результат означает, что каждый процент снижения цены приведет к росту спроса на 2%.

Если же мы полагаем, что начальные значения цены и спроса: P=5, q=100, то эластичность в точке В:

Б. Точечная и дуговая эластичность - student2.ru

Данный результат означает, что каждый процент роста цены приведет к снижению спроса на 0,5%.

Дуговая эластичность

Таким образом, коэффициент эластичности зависит от того, какая точка будет взята за базу при расчете. Чтобы избежать этого затруднения за основу иногда берут средние значения цены ( Б. Точечная и дуговая эластичность - student2.ru ) и спроса ( Б. Точечная и дуговая эластичность - student2.ru ), т.е. рассчитывают коэффициент эластичности при переходе от одной точки к другой – дуговую эластичность.

Формула дуговой эластичности: Б. Точечная и дуговая эластичность - student2.ru

Соответственно в нашем примере дуговая эластичность спроса по цене при переходе от т. А к т. В составляет:

Б. Точечная и дуговая эластичность - student2.ru

Иными словами, при переходе от одной точки к другой каждый процент изменения цены ведет к обратному изменению спроса тоже на 1%.

В. Геометрическая интерпретация прямой эластичности спроса по цене

Приведем без доказательства следующее положение. Если функция спроса линейна, то коэффициент эластичности спроса по цене в точке C по модулю равен отношению отрезков ВС и АС: Б. Точечная и дуговая эластичность - student2.ru (рис. 4-1).

Рис. 4-1. Геометрическая интерпретация эластичности спроса по цене

Б. Точечная и дуговая эластичность - student2.ru

Отсюда вытекает (рис. 4-2):

Рис. 4-2. Эластичность спроса по цене в разных точках

Б. Точечная и дуговая эластичность - student2.ru

1) Эластичность в центральной точке по модулю равна единице (единичная эластичность);

2) Эластичность во всех точках, расположенных выше центральной точки (интервал от т. А до т. С), по модулю больше единицы (спрос эластичен по цене);

3) Эластичность во всех точках, расположенных ниже центральной точки (интервал от т. С до т. В), по модулю меньше единицы (спрос не эластичен по цене);

4) Эластичность в точке А по модулю равна бесконечно большой величине (спрос бесконечно эластичен по цене);

5) Эластичность в т. В равна нулю (нулевая эластичность спроса по цене).

Из вышесказанного вытекает, что чем положе наклон кривой спроса в данной точке, тем эластичнее спрос по цене.

Так в т. С, относящейся к кривой спроса D1 (рис. 4-3), эластичность спроса по цене выше, чем в той же точке, относящейся к кривой спроса D2, поскольку ВС/АС>В¢С/А¢С.

Рис. 4-3. Эластичность спроса по цене и наклон кривой спроса

Б. Точечная и дуговая эластичность - student2.ru

Соответственно существуют и крайние случаи (рис. 4-4):

Рис. 4-4. Крайние случаи эластичности спроса по цене

Б. Точечная и дуговая эластичность - student2.ru

Эластичность во всех точках на кривой спроса D1 бесконечно велика по модулю. Эластичность во всех точках на кривой спроса D2 равна нулю.

Наши рекомендации