Задания и задачи. 1. Множество допустимых планов описывается системой неравенств:
1. Множество допустимых планов описывается системой неравенств:
0£х£1,
0£у£1.
Заданы две целевые функции
F1=2x —>max,
F2=x – y - 1 —>min.
Найти идеальную точку.
2. Множество допустимых планов описывается системой неравенств:
0£х£1,
0£у£1.
Заданы две целевые функции
F1=2x+1—>max,
F2=2у + 3 —>mах.
Найти идеальную точку.
3. Множество допустимых планов описывается системой неравенств:
0£х£2,
0£у£4,
2х+у£6.
Заданы две целевые функции
F1=x + у +2—>max,
F2=x – y + 6 —>mах.
Найти идеальную точку.
4. Фирма имеет возможность реализовывать свои товары на 4-х различных рынках. Затраты на рекламу на этих рынках составляют соответственно 7, 5, 9, и 6 тыс. денежных единиц, доля рынка - 45, 40, 50 и 45 процентов, а объем продаж - 90, 85, 80 и 83 тыс. штук. При этом ставятся одновременно следующие цели: минимизация затрат на рекламу, завоевание максимальной доли рынка и максимизация объема продаж в течение планируемого периода. Построить математическую модель и предложить метод решения.
5. (В задачах 5-8 конкретные значения координат точек р1, р2, р3 задать самотоятельно). Два города р1 и р2 (рис.2.9.7) решили на трассе р11-р12 построить завод (р) по переработке отходов. Возможны разные варианты: первый и второй города стремятся построить завод р как можно ближе, чтобы общее расстояние (s3=s1+s2) до завода было минимальным, второй город имеет приоритет, на одинаковом расстоянии (s1=s2), или первый город стремиться построить завод как можно дальше, второй город - как можно ближе и т.д. Решить для первого случая - определить частную цель для первого города, или тоже самое: найти наикратчайшее расстояние от точки р1 до прямой р11-р12.
рис. 2.9.7
6. Смоделировать и решить следующие задачи (данные в зад.5):
1) 1-й город стремится построить завод р как можно ближе (s1→ min).
2) 2-й город стремится построить завод ближе (s2→ min).
3) Решили, чтоб (s3=s1+s2) было минимальным (s3→ min).
4) Второй город имеет приоритет 2 (s4=s1+2.*s2) (s4→ min).
5) Города хотят построить завод на одинаковом расстоянии (s1=s2).
6) 1-й город стремиться построить завод как можно дальше (s1→ max), 2-й город - ближе (s2→ min).
7. Три города р1, р2, р3 решили также на трассе р11-р12 построить завод р по переработке отходов. Определить ЧЦФ и общее минимальное расстояние (поиск ГЦФ). Укажите зону решений в случае компромисса (все заводы решили построить завод на одинаковом расстоянии).
8. Три города р1, р2, р3 решили в плоскости треугольника, образованного их расположением построить завод р по переработке отходов. Определить местоположение завода таким, чтобы сумма расстояний от городов до него была минимальной. Определите зоны Парето при противоречивых условиях.
9. Руководителю фирмы требуется решить, какую программу для бухучета следует приобрести. Альтернативы – предлагаемые на рынке программы: «1С», «Парус», «С2», «Бухгалтер-3», «программа, изготовленная на заказ». Факторы, определяющие выбор, – параметры программы: стоимость, защищенность информации, гибкость настройки, расширяемость, нетребовательность к ресурсам. С помощью метода анализа иерархий составить рейтинг программ.
10. Для разработки некоторого нефтяного месторождения в результате анализа его геолого-геофизических и геолого-гидродинамических характеристиках определено три благоприятных технологических варианта разработки: законтурное заводнение (D1), циклическое заводнение (D2), циклическое заводнение в сочетании паротепловой обработкой скважин на всех объектах разработки (D3).
Из множества показателей эффективности разработки месторождений нефти и газа руководитель выбрал следующие показатели (критерии):
В1. Экономические показатели
С1. Чистый дисконтированный доход
С2. Внутренняя норма рентабельности
СЗ. Срок окупаемости
С4. Индекс доходности
В2. Риски
С5. Оправданность выбора технических решений (вариантов разработки)
Сб. Надежность контроля за выработкой запасов
С7. Экономический риск
В3. Охрана окружающей среды и недр
С8. Загрязнение воздуха и воды
С9. Сохранность флоры и фауны
Эти показатели образуют следующую иерархию (рис. 2.9.8).
Рис. 2.9.8
Здесь буквами В обозначены виды критериев (показателей) эффективности разработки месторождений, буквы С обозначают конкретные критерии, буквы D – варианты разработки.
Пусть матрицы парных сравнений оказались следующими (табл. 2.9.11):
Таблица 2.9.11
А | АВ1 | АВ2 | АВЗ | |||
АВ1 | ||||||
АВ2 | 1/2 | |||||
АВЗ | 1/3 | 1/2 | ||||
B1 | В1С1 | В1С2 | В1СЗ | В1С4 | ||
В1С1 | ||||||
В1С2 | ||||||
В1СЗ | 1/4 | 1/4 | ||||
В1С4 | 1/5 | 1/5 | 1/4 | |||
В2 | В2С5 | В2С6 | В2С7 | |||
В2С5 | ||||||
В2С6 | 1/4 | |||||
В2С7 | 1/2 | |||||
B3 | ВЗС8 | ВЗС9 | ||||
ВЗС8 | ||||||
ВЗС9 | 1/4 | |||||
Руководителю необходимо выбрать лучший вариант разработки с учетом этого набора показателей эффективности и заданных матриц парных сравнений.