Основные определения системного анализа
Элемент - некоторый объект (материальный, энергетический, информационный), который обладает рядом важных для нас свойств, но внутреннее строение (содержание) которого безотносительно к цели рассмотрения.
Связь - важный для целей рассмотрения обмен между элементами веществом, энергией, информацией.
Система - совокупность элементов, которая обладает следующими признаками:
· связями, которые позволяют посредством переходов по ним от элемента к элементу соединить два любых элемента совокупности;
· свойством, отличным от свойств отдельных элементов совокупности.
Практически любой объект с определенной точки зрения может быть рассмотрен как система. Вопрос состоит в том, насколько целесообразна такая точка зрения.
Большая система - система, которая включает значительное число однотипных элементов и однотипных связей.
В качестве примера можно привести мост с пролетами и опорами.
.
Сложная система - система, которая состоит из элементов разных типов и обладает разнородными связями между ними. В качестве примера можно привести ЭВМ, самолет или судно.
Автоматизированная система - сложная система с определяющей ролью элементов двух типов:
· в виде технических средств;
· в виде действия человека.
Для сложной системы автоматизированный режим считается более предпочтительным, чем автоматический.
Например, посадка самолета или управление автомобилем выполняется при участии человека, а автопилот или бортовой компьютер используется лишь на относительно простых операциях. Типична также ситуация, когда решение, выработанное техническими средствами, утверждается к исполнению человеком.
Структура системы - расчленение системы на группы элементов с указанием связей между ними, неизменное на все время рассмотрения и дающее представление о системе в целом.
Указанное расчленение может иметь материальную, функциональную, алгоритмическую или другую основу.
Пример материальной структуры - структурная схема сборного моста, которая состоит из отдельных, собираемых на месте секций и указывает только эти секции и порядок их соединения.
Пример функциональной структуры - деление двигателя внутреннего сгорания на системы питания, смазки, охлаждения, передачи крутящего момента
Пример алгоритмической структуры - алгоритм программного средства, указывающего последовательность действий или инструкция, которая определяет действия при отыскании неисправности технического устройства.
Структура системы может быть охарактеризована по имеющимся в ней типам связей.
Простейшими из них являются последовательное, параллельное соединение и обратная связь
Декомпозиция- деление системы на части, удобное для каких-либо операций с этой системой.
Примерами будут: разделение объекта на отдельно проектируемые части, зоны обслуживания; рассмотрение физического явления или математическое описание отдельно для данной части системы.
Иерархия - структура с наличием подчиненности, т.е. неравноправных связей между элементами, когда воздействие в одном из направлений оказывают гораздо большее влияние на элемент, чем в другом. Виды иерархических структур разнообразны, но важных для практики иерархических структур всего две - древовидная и ромбовидная
Древовидная структура наиболее проста для анализа и реализации. Кроме того, в ней всегда удобно выделять иерархические уровни - группы элементов, находящиеся на одинаковом удалении от верхнего элемента.
Пример древовидной структуры - задача проектирования технического объекта от его основных характеристик (верхний уровень) через проектирование основных частей, функциональных систем, групп агрегатов, механизмов до уровня отдельных деталей.
Принципы системного подхода- это положения общего характера, являющиеся обобщением опыта работы человека со сложными системами.
Их часто считают ядром методологии. Это такие принципы, как:
· принцип конечной цели: абсолютный приоритет конечной цели;
· принцип единства: совместное рассмотрение системы как целого и как совокупности элементов;
· принцип связности: рассмотрение любой части совместно с ее связями с окружением;
· принцип модульного построения: полезно выделение модулей в системе и рассмотрение ее как совокупности модулей;
· принцип иерархии: полезно введение иерархии элементов и(или) их ранжирование;
· принцип функциональности: совместное рассмотрение структуры и функции с приоритетом функции над структурой;
· принцип развития: учет изменяемости системы, ее способности к развитию, расширению, замене частей, накапливанию информации;
· принцип децентрализации: сочетание в принимаемых решениях и управлении централизации и децентрализации;
· принцип неопределенности: учет неопределенностей и случайностей в системе.
Аппаратная реализация включает стандартные приемы моделирования принятия решения в сложной системе и общие способы работы с этими моделями. Модель строится в виде связных множеств отдельных процедур.
Системный анализ исследует как организацию таких множеств, так и вид отдельных процедур, которые максимально приспосабливают для принятия согласующихся и управленческих решений в сложной системе.
Модель принятия решения чаще всего изображается в виде схемы с ячейками, связями между ячейками и логическими переходами. Ячейки содержат конкретные действия - процедуры. Совместное изучение процедур и их организации вытекает из того, что без учета содержания и особенностей ячеек создание схем оказывается невозможным. Эти схемы определяют стратегию принятия решения в сложной системе.
Именно с проработки связанного множества основных процедур принято начинать решение конкретной прикладной задачи.
Отдельные же процедуры (операции) принято классифицировать на формализуемые и неформализуемые.
В отличие от большинства научных дисциплин, стремящихся к формализации, системный анализ допускает, что в определенных ситуациях неформализуемые решения, принимаемые человеком, являются более предпочтительными.
Системный анализ рассматривает в совокупности формализуемые и неформализуемые процедуры и одной из его задач является определение их оптимального соотношения.
Формализуемые стороны отдельных операций лежат в области прикладной математики и использования ЭВМ.
В ряде случаев математическими методами исследуется связное множество процедур и производится само моделирование принятие решения
. В этом и состоит математическая основа системного анализа.
Такие области прикладной математики, как исследование операций и системное программирование, наиболее близки к системной постановке вопросов.
Практическое приложение системного анализа чрезвычайно обширно по содержанию.
Важнейшими разделами являются научно-технические разработки и различные задачи экономики.
1.3. Основные понятия исследования операций
Операцией называется всякое мероприятие (система действий), объединенное единым замыслом и направленное к достижению какой-то цели.
Цель исследования операций - предварительное количественное обоснование оптимальных решений.
Решение- Всякий определенный выбор зависящих от нас параметров.
Оптимальным называется решение, по тем или другим признакам предпочтительнее перед другими.
Элементы решения- параметры, совокупность которых образует решение.
Множеством допустимых решений называются заданные условия, которые фиксированы и не могут быть нарушены.
Показатель эффективности- количественная мера, позволяющая сравнивать по эффективности разные решения.