ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов

Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов, в результате которой получено следующее распределение клиентов по размеру вкладов:

Размер вклада, у.е. Число вкладчиков, чел.
Вариант
до 5000
5 000 – 15 000
15 000 – 30 000
30 000 – 50 000
свыше 50 000

С вероятностью 0,954 определить:

1) средний размер вклада во всем банке;

2) долю вкладчиков во всем банке с размером вклада свыше 15000 у.е.;

3) необходимую численность выборки при определении среднего размера вклада, чтобы не ошибиться более чем на 500 у.е.;

4) необходимую численность выборки при определении доли вкладчиков во всем банке с размером вклада свыше 30 000 у.е., чтобы не ошибиться более чем на 10%.

ТЕМА 4. РЯДЫ ДИНАМИКИ

Задача 1. Смертность от болезней системы кровообращения в России за период 1995-2004 гг. характеризуется следующим рядом динамики.

Год
Умершие, тыс. чел. 1163,5 1113,7 1100,3 1094,1 1187,8 1231,4 1253,1 1308,1 1330,5 1287,7

Вычислить: абсолютные, относительные, средние изменения и их темпы базисным и цепным способами. Проверить ряд на наличие в нем линейного тренда, на основе которого рассчитать интервальный прогноз на 2005 год с вероятностью 95%.

Решение. Любое изменение уровней ряда динамики определяется базисным (сравнение с первым уровнем) и цепным (сравнение с предыдущим уровнем) способами. Оно может быть абсолютным (разность уровней ряда) и относительным (соотношение уровней).

Базисное абсолютное изменение представляет собой разность конкретного и первого уровней ряда (47), а цепное абсолютное изменение представляет собой разность конкретного и предыдущего уровней ряда (48).

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru (47) ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru (48)

По знаку абсолютного изменения делается вывод о характере развития явления: при ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru > 0 — рост, при ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru < 0 — спад, при ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = 0 — стабильность.

В нашей задаче эти изменения определены в 3-м и 4-м столбцах таблицы 5. Для проверки правильности расчетов применяется правило, согласно которому сумма цепных абсолютных изменений равняется последнему базисному. В нашей задаче это правило выполняется: ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru =124,2 и ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru =124,2.

Базисное относительное изменение представляет собой соотношение конкретного и первого уровней ряда (49), а цепное относительное изменение представляет собой соотношение конкретного и предыдущего уровней ряда (50).

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru (49) ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru (50)

Относительные изменения уровней — это по существу индексы динамики, критериальным значением которых служит 1. Если они больше ее, имеет место рост явления, меньше ее — спад, а при равенстве единице наблюдается стабильность явления.

В нашей задаче эти изменения определены в 5-м и 6-м столбцах таблицы 5.

Вычитая единицу из относительных изменений, получают темп изменения уровней, критериальным значением которого служит 0. При положительном темпе изменения имеет место рост явления, при отрицательном — спад, а при нулевом темпе изменения наблюдается стабильность явления. В нашей задаче темпы изменения определены в 7-м и 9-м столбцах таблицы 5, а в 8-м и 10-м сделан вывод о характере развития изучаемого явления. Для проверки правильности расчетов применяется правило, согласно которому произведение цепных относительных изменений равняется последнему базисному. В нашей задаче это правило выполняется: ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru =1,107 и ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru =1,107.

Таблица 5. Вспомогательные расчеты для решения задачи

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru

Обобщенной характеристикой ряда динамики является средний уровень ряда ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru . Способ расчета ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru зависит от того, моментный ряд или интервальный (см. рис.3):

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru

Рис.3. Методы расчета среднего уровня ряда динамики.

В нашей задаче ряд динамики интервальный, значит, применяем формулу средней арифметической простой (17): ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = 12070,2 / 10 = 1207,02 (тыс. чел.). То есть за период 1995-2004 в России в среднем за год от болезней системы кровообращения умирало 1207,02 тыс. чел.

Кроме среднего уровня в рядах динамики рассчитываются и другие средние показатели – среднее изменение уровней ряда (базисным и цепным способами), средний темп изменения.

Базисное среднее абсолютное изменение – это частное от деления последнего базисного абсолютного изменения на количество изменений уровней (51). Цепное среднее абсолютное изменение уровней ряда – это частное от деления суммы всех цепных абсолютных изменений наколичество изменений (52).

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru Б = ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru (51) ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru Ц = ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru (52)

По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность. Из правила контроля базисных и цепных абсолютных изменений следует, что базисное и цепное среднее изменение должны быть равными. В нашей задаче ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = 124,2/9 = 13,8, то есть ежегодно в среднем смертность от болезней системы кровообращения растет на 13,8 тыс. чел.

Наряду со средним абсолютным изменением рассчитывается и среднее относительное. Базисное среднее относительное изменение определяется по формуле (53), а цепное среднее относительное изменение – по формуле (54):

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru Б= ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru (53) ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru Ц= ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru (54)

Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. В нашей задаче ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = 1,0114, то есть ежегодно в среднем смертность от болезней системы кровообращения растет в 1,0114 раза.

Вычитанием 1 из среднего относительного изменения образуется соответствующий средний темп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики. В нашей задаче ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = 1,0114 – 1 = 0,0114, то есть ежегодно в среднем смертность от болезней системы кровообращения растет на 1,14%.

Проверка ряда динамики на наличие в нем тренда (тенденции развития ряда) возможна несколькими способами (метод средних, Фостера и Стюарта, Валлиса и Мура и пр.), но наиболее простым является графическая модель, где на графике по оси абсцисс откладывается время, а по оси ординат – уровни ряда. Соединив полученные точки линиями, в большинстве случаев можно выявить тренд визуально. Тренд может представлять собой прямую линию, параболу, гиперболу и т.п. В итоге приходим к трендовой модели вида:

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru , (55)

где ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – математическая функция развития; ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – случайное или циклическое отклонение от функции; t – время в виде номера периода (уровня ряда). Цель такого метода – выбор теоретической зависимости ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru в качестве одной из функций:

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – прямая линия; ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – гипербола; ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – парабола; ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – степенная; ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – ряд Фурье.

Для выявления тренда (тенденции развития ряда) в нашей задаче построим график Y(t) (рис.4):

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru

Рис.4. График динамики смертности от болезней системы кровообращения в РФ.

Из данного графика видно, что есть все основания принять уравнение тренда в виде линейной функции.

Определение параметров ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru в этих функциях может вестись несколькими способами, но самые незначительные отклонения аналитических (теоретических) уровней ( ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – читается как «игрек, выравненный по t») от фактических ( ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru ) дает метод наименьших квадратов – МНК. При этом методе учитываются все эмпирические уровни и должна обеспечиваться минимальная сумма квадратов отклонений эмпирических значений уровней ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru от теоретических уровней ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru :

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru . (56)

В нашей задаче при выравнивании по прямой вида ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru параметры ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru и ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru отыскиваются по МНК следующим образом. В формуле (55) вместо ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru записываем его конкретное выражение ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru . Тогда ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru . Дальнейшее решение сводится к задаче на экстремум, т.е. к определению того, при каком значении ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru и ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru функция двух переменных S может достигнуть минимума. Как известно, для этого надо найти частные производные S по ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru и ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru , приравнять их к нулю и после элементарных преобразований решить систему двух уравнений с двумя неизвестными.

В соответствии с вышеизложенным найдем частные производные:

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru

Сократив каждое уравнение на 2, раскрыв скобки и перенеся члены с y в правую сторону, а остальные – оставив в левой, получим систему нормальных уравнений:

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru (57)

где n – количество уровней ряда; t – порядковый номер в условном обозначении периода или момента времени; y – уровни эмпирического ряда.

Эта система и, соответственно, расчет параметров ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru и ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru упрощаются, если отсчет времени ведется от середины ряда. Например, при нечетном числе уровней серединная точка (год, месяц) принимается за нуль. Тогда предшествующие периоды обозначаются соответственно –1, –2, –3 и т.д., а следующие за средним (центральным) – соответственно 1, 2, 3 и т.д. При четном числе уровней два серединных момента (периода) времени обозначают –1 и +1, а все последующие и предыдущие, соответственно, через два интервала: ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru , ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru , ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru и т.д.

При таком порядке отсчета времени (от середины ряда) ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = 0, поэтому, система нормальных уравнений упрощается до следующих двух уравнений, каждое из которых решается самостоятельно:

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru (58)

Как видим, при такой нумерации периодов параметр ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru представляет собой средний уровень ряда. Определим по формуле (58) параметры уравнения прямой, для чего исходные данные и все расчеты необходимых сумм представим в таблице 6.

Из таблицы получаем, что ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = 12070,2/10 = 1207,02 и ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = 4195/330 = 12,7121. Отсюда искомое уравнение тренда ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru =1207,02+12,7121t. В 6-м столбце таблицы 6 приведены трендовые уровни, рассчитанные по этому уравнению. Для иллюстрации построим график эмпирических (маркеры-кружочки) и трендовых уровней (рис.5).

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru

Рис.5. График эмпирических и трендовых уровней смертности от болезней системы кровообращения в РФ.

По полученной модели для каждого периода (каждой даты) определяются теоретические уровни тренда ( ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru ) и оценивается надежность (адекватность) выбранной модели тренда. Оценку надежности проводят с помощью критерия Фишера, сравнивая его расчетное значение Fр с теоретическими значениями FТ (приложение 1). При этом расчетный критерий Фишера определяется по формуле:

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru , (59)

где k – число параметров (членов) выбранного уравнения тренда; ДА – аналитическая дисперсия, определяемая по формуле (61); До – остаточная дисперсия (62), определяемая как разность фактической дисперсии ДФ (60) и аналитической дисперсии:

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru ; (60)

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru ; (61)

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru . (62)

Сравнение расчетного и теоретического значений критерия Фишера ведется обычно при уровне значимости ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru с учетом степеней свободы ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru и ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru . Уровень значимости ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru связан с вероятностью ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru следующей формулой ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru . При условии Fр > FТ считается, что выбранная математическая модель ряда динамики адекватно отражает обнаруженный в нем тренд.

Таблица 6. Вспомогательные расчеты для решения задачи

Год y t t2 yt ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru (y – ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru )2 ( ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ruЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru )2 (y – ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru )2
1163,5 -9 -10471,5 1092,611 5025,263 13089,44 1893,9904
1113,7 -7 -7795,9 1118,035 18,79354 7918,3033 8708,6224
1100,3 -5 -5501,5 1143,459 1862,733 4039,9506 11389,1584
1094,1 -3 -3282,3 1168,884 5592,592 1454,3822 12750,9264
1187,8 -1 -1187,8 1194,308 42,35249 161,59803 369,4084
1231,4 1231,4 1219,732 136,1394 161,59803 594,3844
1253,1 3759,3 1245,156 63,10136 1454,3822 2123,3664
1308,1 6540,5 1270,581 1407,705 4039,9506 10217,1664
1330,5 9313,5 1296,005 1189,915 7918,3033 15247,3104
1287,7 11589,3 1321,429 1137,652 13089,44 6509,2624
Итого 12070,2 12070,2 16476,25 53327,348 69803,596

Проверим тренд в нашей задаче на адекватность по формуле (59), для чего в 7-м столбце таблицы 6 рассчитан числитель остаточной дисперсии, а в 8-м столбце – числитель аналитической дисперсии. В формуле (59) можно использовать их числители, так как оба они делятся на число уровней n (n сократятся): FР = 53327,348*8/(16476,25*1) = 25,893 > FТ, значит, модель адекватна и ее можно использовать для прогнозирования (FТ= 5,32 находим по приложению 1 в 1-ом столбце [ ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = k – 1 = 1] и 8-й строке [ ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = n – k = 8]).

При составлении прогнозов уровней социально-экономических явлений обычно оперируют не точечной, а интервальной оценкой, рассчитывая так называемые доверительные интервалы прогноза. Границы интервалов определяются по формуле (63):

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru , (63)

где ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – точечный прогноз, рассчитанный по модели тренда; ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – коэффициент доверия по распределению Стьюдента при уровне значимости ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru и числе степеней свободы ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru =n–1 (приложение 2); ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – ошибка аппроксимации, определяемая по формуле (64):

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru , (64)

где ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru и ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru – соответственно фактические и теоретические (трендовые) значения уровней ряда динамики; n – число уровней ряда; k – число параметров (членов) в уравнении тренда.

Определим доверительный интервал в нашей задаче на 2005 год с уровнем значимости ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = (1–0,95) = 0,05. Для этого найдем ошибку аппроксимации по формуле (64): ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = 45,38. Коэффициент доверия по распределению Стьюдента ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = 2,2622 при ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru = 10 – 1=9.

Прогноз на 2005 с вероятностью 95% осуществим по формуле (63):

Y2005=(1207,02+12,7121*11) ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ. Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов - student2.ru 2,2622*45,38 или 1244,19<Y2005<1449,51 (тыс.чел.).

Наши рекомендации