Блочная модель круговорота
Существуют различные способы изображения биогеохимических круговоротов. Выбор способа зависит от особенностей биогеохимического цикла того или иного элемента. При обсуждении круговорота кислорода экологи обычно различают пути, связанные с химическим включением кислорода в органические соединения, и пути, сопряженные с передвижением воды. Круговорот воды, или гидрологический цикл, хорошо сбалансирован в масштабе земного шара и приводится в движение энергией, в основном не связанной с организмами. Особи быстро теряют воду путем испарения и выделения; за время жизни особи содержащаяся в организме вода может обновляться сотни и тысячи раз. В то же время участие организмов в обмене воды ничтожно мало — общий объем испарения и транспирации оценивается в 59⋅1018 г в год, в связи с чем при изображении биогеохимического цикла воды
Рис. 10.2. Круговорот воды и его главные компоненты
в глобальном масштабе (по: Риклефс, 1979).
Цифры в скобках-количество воды, миллиарды миллиардов
(1018) граммов в год.
делают акцент на резервном, а не на обменном фонде (рис. 10.2).
При изображении биогеохимических циклов других веществ делают акцент на обмене между организмами и резервным фондом, а также на путях движения веществ внутри экосистемы. Так, круговорот углерода и кислорода обеспечивается комплементарными процессами фотосинтеза и дыхания. Азот, фосфор и сера проделывают в экосистеме более сложный путь, причем в этом им помогают микроорганизмы со специализированными метаболическими функциями.
Любую экосистему можно представить в виде ряда блоков, через которые проходят различные материалы и в которых эти материалы могут оставаться на протяжении различных периодов времени (рис. 10.3). В круговоротах минеральных веществ в экосистеме, как правило, участвуют три активных блока: живые организмы, мертвый органический детрит и доступные неорганические вещества. Два добавочных блока — косвенно доступные неорганические вещества и осаждающиеся органические вещества — связаны с круговоротами биогенных элементов в каких-то периферических участках общего цикла (рис. 10.3), однако обмен между этими блоками и остальной экосистемой замедлен по сравнению с обменом, происходящим между активными блоками.
Процессы ассимиляции и распада, благодаря которым происходят круговороты биогенных элементов в биосфере, тесно связаны с поглощением и освобождением энергии организмами. Следовательно, пути биогенных элементов параллельны потоку энергии через сообщество.
В наибольшей степени с превращениями энергии в сообществе связан круговорот углерода, так как большая часть энергии, ассимилированной в процессе фотосинтеза, содержится в органических углеродсодержащих соединениях. В результате процессов, сопровождающихся выделением энергии, среди которых самым главным является дыхание, углерод высвобождается в
Рис. 10.3. Блочная модель экосистемы с указанием некоторых наиболее важных путей обмена минеральных веществ (по: Риклефс, 1979).
виде углекислого газа. Когда в организме происходит метаболизм органических соединений, содержащих азот, фосфор и серу, последние нередко удерживаются в этом организме, поскольку они необходимы для синтеза структурных белков, ферментов и других органических молекул, образующих структурные и функциональные компоненты живых тканей. А поэтому прохождение азота, фосфора и серы через каждый трофический уровень несколько замедленно по сравнению со средним временем переноса энергии.
10.3. ПРИМЕРЫ НЕКОТОРЫХ БИОГЕОХИМИЧЕСКИХ ЦИКЛОВ
Каждый химический элемент, совершая круговорот в экосистеме, следует по своему особому пути, но все круговороты приводятся в движение энергией, и участвующие в них элементы попеременно переходят из органической формы в неорганическую и обратно. Рассмотрим круговороты некоторых химических элементов с учетом особенностей поступления их из обменного фонда в резервный и возврата в обменный фонд.
Биогеохимический цикл азота — пример очень сложного круговорота вещества с резервным фондом в атмосфере (рис. 10.4). Азот, входящий в состав белков и других азотсодержащих соединений, переводится из
Рис. 10.4. Биогеохимический цикл азота.
Здесь и на рис. 10.5-10.7: / — обменный фонд;
//, ///—резервные фонды.
органической формы в неорганическую в результате деятельности ряда бактерий — редуцентов, причем каждый вид бактерий выполняет свою часть работы.
Особенность биогеохимического цикла фосфора (рис. 10.5) состоит в том, что редуценты переводят фосфор из органической формы в неорганическую, не окисляя его. Цикл фосфора менее совершенен, чем цикл азота, так как в результате происходит утечка этого элемента в глубокие осадки.
Биогеохимический цикл серы характерен обширным резервным фондом в земной коре, и меньшим — в ат-
Рис. 10.5. Биогеохимический цикл фосфора.
Рис. 10.6. Биогеохимический цикл серы.
Рис. 10.7. Биогеохимический цикл углерода.
мосфере (рис. 10.6). В результате такой слаженности обменного и резервного фондов сера не является лимитирующим фактором. И, наконец, углерод участвует в цикле с небольшим, но весьма подвижным фондом в атмосфере (рис. 10.7). Благодаря буферной системе карбонатного цикла круговорот приобретает устойчивость, но он все-таки уязвим из-за небольшого объема резервного фонда (0,029% С02).
Рассмотрение этих примеров показывает, что критическими моментами биогеохимических циклов являются захват (уровень продуцентов) и возврат (уровень редуцентов) веществ из физической среды. Эти моменты связаны с реакциями восстановления и окисления. Восстановление химических веществ осуществляется в конечном итоге за счет энергии солнечного излучения. На каждом этапе переноса энергии происходит ее рассеивание, заканчивающееся на уровне редуцентов, которые окисляют элементы до состояния, в котором они уже могут быть захвачены продуцентами. В целом на уровне обменного фонда биогеохимический круговорот может быть представлен системой ступенек, в пределах каждой из которых осуществляется своя часть процесса окисления (рис. 10.8).
Таким образом, важнейшее свойство потоков в экосистемах—их цикличность. Вещества в экосистемах со-
Рис. 10.8. Принцип движения веществ в обменном фонде.
вершают практически полный круговорот, попадая сначала в организмы, затем в абиотическую среду и вновь возвращаясь к организмам.
В круговоротах участвуют не только биогенные элементы, но и многие загрязняющие вещества. Некоторые из них не только циркулируют в окружающей среде, но и имеют тенденцию накапливаться в организмах. В таких случаях концентрация какого-либо загрязняющего вещества, обнаруженного в организмах, нарастает по мере прохождения его вверх по пищевой цепи, гак как организмы быстрее поглощают загрязняющие вещества, чем выделяют их. Ртуть, например, может содержаться в воде и придонном иле в относительно безвредных концентрациях, тогда как ее содержание в организме водных животных, имеющих раковину или панцирь, может достигать летального для них уровня. Действие пестицидов, таких как ДДТ, основывается на сходном принципе: содержание их в воде может быть столь незначительным, что выявить их практически не удается, однако чем выше трофический уровень, на котором находится данный организм, тем больше концентрация пестицида в его тканях. Это явление известно под названием биологического усиления, или биологического накопления.
Тема 11 БИОТИЧЕСКОЕ СООБЩЕСТВО
На примере биогеохимических циклов мы рассмотрели (см. рис. 9.2) связь между биотическими и абиотическими компонентами экосистемы. Биотическая часть называется также биотой, биоценозом или биотическим сообществом.
Биотическое сообщество — это любая совокупность популяций, населяющих определенную территорию (биотоп), это своего рода организационная единица в том смысле, что она обладает некоторыми особыми свойствами, не присущими слагающим ее компонентам — особям и популяциям. Биотическое сообщество постоянно меняет внешний облик (мысленно сравните осенний и зимний лес), при этом оно обладает собственной структурой и функциями.