ЛЕКЦИЯ №11. Динамика популяций

Если при незначительной эмиграции и иммиграции рождаемость превышает смертность, то популяция будет рас­ти. Рост популяции является непрерывным процессом, если в ней существуют все возрастные группы. Скорость роста попу­ляции при отсутствии каких-либо экологических ограничений описывает дифференциальное уравнение:

dN/dt = rN,

где N — численность особей в популяции; t — время; r — константа скорости естественного прироста.

J-образная модель роста популяции. Если r > 0, то со вре­менем численность популяции становится больше. Рост проис­ходит сначала медленно, а затем стремительно увеличивается по экспоненциальному закону, т. е. кривая роста популяции принимает J-образный вид (рис. 4.5, а). Такая модель осно вывается на допущении, что рост популяции не зависит от ее плотности. Считают, что почти любой вид теоретиче­ски способен увеличить свою численность до заселения всей Земли при достатке пищи, воды, пространства, постоянстве условий среды и отсутствии хищников.

 
  ЛЕКЦИЯ №11. Динамика популяций - student2.ru

S-образная модель роста популяции. Иное развитие получается ситуация при ограниченности пищевых ресурсов либо при скоплении токсичных продуктов (отходов) метаболизма. Первоначальный экспоненциальный рост в исходных благоп­риятных условиях со временем продолжаться не может и по­степенно замедляется. Плотность популяции регулирует ис­тощение пищевых ресурсов, накопление токсикантов и поэто­му влияет на рост численности. С увеличением плотности скорость роста популяции постепенно снижается до нуля, и кривая выходит на некоторый стабильный уровень (график об­разует плато). Кривая такого роста имеет S-образную форму, и поэтому соответствующая модель развития со­бытий называется S-образной. Она характерна, например, для дрожжей, фактором, ограничивающим их рост, является на­копление спирта, а также для водорослей, самозатеняющих друг друга. В обоих случаях численность популяции не дости­гает уровня, на котором начинает сказываться нехватка эле­ментов питания (биогенов). На рост численности, в которой значительную (возможно, даже главную) роль играет пространство, также влияет пере­населенность.

Скорость роста численности в S-образной модели определя­ет дифференциальное уравнение

dN/dx = rN(l - N/K)

где К — поддерживающая емкость среды, т. е. максимальный размер популяции, которая может существовать в данных ус­ловиях, удовлетворяя свои потребности неопределенно долго.

Если N > К, скорость роста отрицательна. Если N < К, скорость роста положительна и величина популяции N стре­мится к К, т. е. приводится в соответствие с поддерживающей емкостью среды. Если N = К, скорость роста популяции равна нулю. При нулевом росте популяция стабильна, т. е. ее размеры не меняются, хотя отдельные организмы по-прежнему рас­тут, размножаются и отмирают. Происходящее размножение уравновешивается смертностью.

В специализированной литературе J- и S-образные модели роста численности часто называют соответственно экспоненци­альной и логистической.

Поддерживающая емкость играет решающую роль не только при росте популяции по S-образной, но также и по J-об-разной модели, ибо в некоторый момент времени все же насту­пает исчерпание какого-либо ресурса среды, т. е. он (или даже несколько одновременно) становится лимитирующим. Разви­тие дальнейших событий показано на рис. 4.6, а, б. После бума с внезапным выходом J-образной кривой за пределы уровня К происходит крах популяции, т. е. катастрофа, приводящая к резкому снижению численности. Причиной краха часто быва­ет внезапное резкое изменение условий окружающей среды (экологических факторов), понижающее поддерживающую емкость среды. Тогда огромное число особей, не способных эмигрировать, погибает.

При наиболее благоприятном для популяции стечении об­стоятельств новый уровень численности соответствует поддер­живающей емкости среды или, иначе говоря, кривая роста превращается из J-образной в S-образную (рис. 4.6, б).

 
  ЛЕКЦИЯ №11. Динамика популяций - student2.ru

Однако исчерпание пищевых ресурсов может привести также к появлению и других трудностей для популяции, например к развитию болезней. Тогда численность снижается до уровня значи­тельно более низкого, чем поддерживающая емкость среды (рис. 4.6, а).

Применительно к условиям реальной природной среды принято использовать понятия биотический потенциал—сово­купность всех экологических факторов, способствующих уве­личению численности популяции, или видовая способность к размножению при отсутствии ограничений со стороны среды, а также сопротивление среды—сочетание факторов, ограни­чивающих рост (лимитирующих факторов). Любые изменения популяции есть результат нарушения равновесия между ее биотическим потенциалом и со­противлением окружающей среды.

Наши рекомендации