Тяжелые металлы – основные неорганические экотоксиканты

К группе тяжелых металлов относят, за исключением благородных и редких, те из металлов, которые имеют плотность более 8 тыс.кг/м3 (ртуть, свинец, медь, цинк, никель, кадмий, кобальт, сурьму, висмут, олово, ванадий, полуметалл мышьяк и др.). Многие из них широко распространены в окружающей среде и способны вызывать заболевания у людей.

Основной поставщик тяжелых металлов – предприятия цветной металлургии. Сильное загрязнение свинцом и другими тяжелыми металлами наблюдается вокруг автострад. Часть техногенных выбросов тяжелых металлов поступает в атмосферу в виде тонких аэрозолей и переносится на значительные расстояния, приводя к глобальному загрязнению.

Механизмы токсического действия тяжелых металлов различны. Многие металлы при определенных концентрациях ингибируют действие ферментов (медь, ртуть). Некоторые металлы образуют хелатоподобные комплексы с обычными метаболитами, нарушая обмен веществ (железо). Другие металлы повреждают клеточные мембраны, изменяя их проницаемость и другие свойства. Некоторые металлы конкурируют с необходимыми организму элементами (Стронций-90 может замещать в организме Ca, Цезий-137 – калий, кадмий может замещать цинк).

Ртуть

Ртуть широко используется в электротехнической промышленности и приборостроении, на хлорных производствах, как легирующая добавка, теплоноситель, катализатор при синтезе пластмасс, в лабораторной и медицинской практике, сельском хозяйстве.

Основными источниками загрязнения окружающей среды этим элементом являются: пирометаллургические процессы получения металла, сжигание органических видов топлива, сточные воды, производство цветных металлов, красок, фунгицидов и т.д.

Токсическое действие ртути зависит от вида соединения: алкилртутные соединения токсичнее неорганических. Наиболее токсичны алкилртутные соединения с короткой цепью — метилртуть, этилртуть. Они больше накапливаются в организме, лучше растворяются в липидах, легче проникают через биологические мембраны. Чувствительность нервной системы к метил- и этилртути выше, чем к другим соединениям.

Выбросы ртути в окружающую среду в результате деятельности человека весьма значительны. Общая (природная и антропогенная) эмиссия ртути в атмосферу составляет свыше 6000 тонн ежегодно, причем менее половины — 2500 т составляют поступления от естественных источников.

Соединения ртути попадают в водную среду, где активно аккумулируются планктонными организмами, представляющими пищу для ракообразных, а последние поедаются рыбами, которых поедают птицы, в печени которых ртуть обнаруживается в больших количествах.

В организм человека ртуть может попадать с продуктами питания растительного и животного происхождения, продуктами моря, атмосферным воздухом и водой. В производственных условиях основное значение имеет поступление ртути в организм через дыхательные пути в виде паров или пыли. При всех путях поступления ртуть накапливается преимущественно в почках, селезенке и печени.

Ртуть обладает широким спектром токсических эффектов на теплокровных: нарушение биосинтеза белков и окислительного фосфорилирования в митохондриях почек и печени; возникновение биохимических сдвигов в организме; нейротоксическое, гонадотоксическое, генотоксическое, эмбриотоксическое и тератогенное воздействие. Под действием токсических концентраций органических соединений ртути происходит нарастание интенсивности процессов свободнорадикального окисления. Особо чувствительными к действию ртути являются эмбрионы. Органические соединения, хорошо связываясь с белками, легко проникают через гематоэнцефалический и плацентарный барьеры и накапливаются в головном мозге, в том числе и плода, где их концентрация в 1,5—2 раза больше, чем у матери. В мозговой ткани метилртути содержится в 5—6 раз больше, чем в крови.

Основные проявления хронического воздействия малых концентраций ртути следующие: повышенная нервозность, ослабление памяти, депрессивное состояние, парестезии на конечностях, мышечная слабость, эмоциональная лабильность, нарушение координации движений, симптомы поражения почек. К данной симптоматике могут присоединяться признаки поражения сердечно-сосудистой системы — аномальное повышение артериального давления, тахикардия, изменение электрической активности (ЭКГ).

Болезнь Минамата — ртутная интоксикация алиментарного происхождения, обусловленная употреблением в пищу рыбы и других гидробионтов, выловленных из водоемов, загрязненных ртутью (Япония)

Во многих странах мира отмечена сходная клиническая картина алиментарных ртутных интоксикаций, обусловленных употреблением протравленного ртутьорганическими соединениями посевного зерна, хлебобулочных изделий из него, а также мяса скота, получавшего это зерно с кормом. Латентный период данных заболеваний в зависимости от суточной дозы метилртути, поступившей в организм человека, составлял от 1—2 дней до нескольких недель.

Есть сообщения о защитном воздействии цинка и селена при поступлении в организм ртути. Защитное действие селена (в том числе содержащегося в рыбных продуктах, например в тунце) усматривают в деметилировании ртути с образованием нетоксичного селенортутного комплекса. Токсичность неорганических соединений ртути снижают аскорбиновая кислота и медь при их повышенном поступлении в организм, а органических соединений — протеины, цистеин, токоферолы. Пиридоксин, особенно при избыточном введении в организм, усиливает токсичность ртути.

Несмотря на достаточную изученность, экологическая опасность ртути и последствий ее действия представляет собой сегодня серьезную проблему в экотоксикологии.

Свинец

Еще одним значимым экотоксикантом является свинец, который широко используется в производстве кабелей, как компонент различных сплавов, для защитных экранов от гамма-излучения, при производстве электрических аккумуляторов, красок и пигментов, в химическом машиностроении, пиротехнике, полиграфии, сельском хозяйстве. Еще один источник попадания свинца в организм человека — свинцовая посуда.

Выбросы свинца в окружающую среду в результате деятельности человека весьма значительны. Основными источниками загрязнения биосферы этим элементом являются: выхлопные газы двигателей внутреннего сгорания, высокотемпературные технологические процессы, добыча и переработка металла. Перенос свинца в окружающей среде и его распространение в объектах окружающей среды происходит главным образом через атмосферу. Некоторые виды планктона обладают способностью концентрировать свинец в 12000 раз. Интенсивно аккумулируют свинец хвойные деревья и мох.

Люди подвергаются воздействию свинца при потреблении загрязненных пищи и воды, а также и при дыхании. Концентрация свинца в костях современного человека в 700—1200 раз превышает его содержание в скелетах людей живших 1600 лет назад.

Свинец характеризуется широким спектром вызываемых им токсических эффектов. Механизм его действия обусловлен ингибированием ферментов детоксикации ксенобиотиков и угнетением образования цитохома Р-450 и цитохромоксидазы.

Эксперименты на крысах и мышах дали убедительные доказательства канцерогенности свинца и его неорганических соединений, токсичность которых неоднородна и убывает в зависимости от вида соединения: нитрат > хлорид > оксид > карбонат > ортофосфат. В картине хронического свинцового отравления выделяют следующие клинические синдромы:

1. Изменения со стороны нервной системы (астенический синдром, энцефалопатии, двигательные расстройства, поражение зрительных анализаторов).

2. Изменения системы крови (ретикулоцитоз, анизоцитоз, микроцитоз, свинцовая анемия).

3. Эндокринные и обменные нарушения (ферментативные расстройства, нарушения обмена порфиринов, менструальной и детородной функций).

4. Изменения со стороны желудочно-кишечного тракта (от тошноты, изжоги до свинцовых колик).

5. Изменения со стороны сердечно-сосудистой системы (аритмия, синусовая брадикардия или тахикардия, вазоневроз).

6. Нарушения функции почек (поражения почечных канальцев, интерстициальные нефропатии, ведущие к почечной недостаточности).

Особо следует отметить, что маленькие дети значительно легче, чем взрослые аккумулируют свинец и потому относятся к группе высокого риска в отношении свинцовых интоксикаций.

Кадмий

Согласно данным Института продуктов питания Австрии, самым опасным экотоксикантом в группе тяжелых металлов является не ртуть и не свинец, а Кадмий, который относится к рассеянным элементам и содержится в виде примеси во многих минералах. Однако антропогенное загрязнение кадмием окружающей среды в несколько раз превышает природную его концентрацию.

Кадмий широко применяется в ядерной энергетике, в гальванотехнике, в производстве аккумуляторов (никель-кадмиевые батареи), используется как стабилизатор поливинилхлорида, пигмент в стекле и пластмассах, электродный материал, компонент различных сплавов.

Основными источниками загрязнения окружающей среды этим элементом являются: производство цветных металлов, сжигание твердых отходов, угля, сточные воды горнометаллургических комбинатов, производство минеральных удобрений, красителей и т.д.

В организме кадмий может легко взаимодействовать с другими металлами, особенно с кальцием и цинком, что влияет на выраженность его воздействий. Кадмий способен замещать кальций в кальмодулине, нарушая тем самым физиологические процессы регуляции поглощения кальция. Он способен ингибировать ионный транспорт и индуцировать синтез металлотионеина. Эпидемиологические данные указывают на чрезвычайную опасность кадмия для человека, который чрезвычайно медленно выводится из человеческого организма. Хроническое отравление кадмием имеет следующие признаки: поражение почек, нервной системы, легких, нарушение функций половых органов, боли в костях скелета. Этот комплекс нарушений называют болезнью "итай-итай" (сильные боли, деформация скелета, переломы костей, повреждения почек). Имеются достоверные доказательства канцерогенной опасности кадмия.

Мышьяк

Мышьяк является одним из самых опасных химических экотоксикантов, поскольку имеет широкое распространение в объектах окружающей среды и вызывает тяжелые последствия в живых системах.

В природе мышьяк обычно существует в виде арсенидов меди, никеля и железа, а также оксидов и сульфидов. В водной среде присутствует обычно в форме арсенитов и арсенатов. Разнообразные соединения мышьяка находят широкое применение в сельском и лесном хозяйстве как пестициды и гербициды, применяются в медицине и ветеринарии, стекольной, керамической, текстильной и кожевенной промышленности, электронике, электротехнике, оптике, при производстве красителей, зеркал и в других областях. Ежегодно в мире промышленно производится более 60 000 тонн соединений As.

Антропогенные источники поступления мышьяка в окружающую среду – добыча и переработка мышьяксодержащих руд, пиррометаллургия, сжигание природных видов топлива – каменного угля, сланцев, нефти, торфа, а также производство и использование суперфосфатов, содержащих мышьяк ядохимикатов, препаратов и антисептиков.

Метаболизм мышьяка чрезвычайно сложен. Абсорбция, трансплацентарный транспорт, распределение в организме, элиминация и биотрансформация мышьяка во многом видоспецифичны, зависят от путей поступления и химической структуры As-соединений. Необходимо отметить, что во многих живых организмах происходит конверсия пятивалентного As в более токсичный трехвалентный, а выделение идет обычно в виде метилированных производных.

Токсические эффекты соединений мышьяка хорошо и давно известны. Основные поражения, вызываемые мышьяком у людей, можно свести к следующим:

1) нарушения тканевого дыхания;

2) накопление в организме кислых продуктов обмена, т.е общий ацидоз;

3) нарушение гемодинамики, расстройство сердечной деятельности;

4) гемолиз и анемия;

5) дегенеративные и некротические процессы в тканях на месте контакта;

6) эмбрио- и гонадотоксические и тератогенные эффекты;

7) канцерогенное действие, которое проявляется спустя значительное время после контакта с мышьяком, причем кроме производственных условий, главные пути поступления этого элемента в организм человека – мышьяксодержащие лекарства, пестициды и питьевая вода.

8) соединения мышьяка обладают и мутагенным (кластогенным) эффектом – они, не вызывая генных мутаций, индуцируют как in vitro, так и in vivo хромосомные аномалии у различных объектов, в том числе и у людей.

Все компоненты биосферы тесно связаны и взаимообусловлены, и бесконтрольное загрязнение почв и других сопредельных сред чужеродными для живых организмов компонентами может угрожать существованию жизни на Земле, так как тяжелые металлы и радиоактивные элементы накапливаются в костях, тканях, крови человека, отравляя организм и вызывая мутационные изменения с непредвиденными последствиями.

Наши рекомендации