Кибернетика и ее принципы
Кибернетика(от греч. kybenietike" — управление, искусство управления) — возникла в 40-х гг. XX в. в результате насущной практической потребности в повышении качества управления в производственно-технической, хозяйственной, политической, военной и других областях человеческой деятельности.
Отцом кибернетики по праву называют выдающегося американского математика Н. Винера, который в 1948 г. впервые сформулировал основные идеи и принципы этой науки. Возникновение кибернетики было подготовлено
270
всем предшествующим развитием науки — в первую очередь теории автоматического регулирования следящих систем, техники переработки и передачи информации, теории игр иоптимальных решений, физиологии (теории рефлексов), медицины, математической логики, теории алгоритмов и машин, радиоэлектроники и других наук. Решающую роль в появление и развитии кибернетики имело появление электронной автоматики и быстродействующих ЭВМ.
В создании кибернетики принимали участие многие ученые: Д. Биглоу, К. Шеннон, И.М. Сеченов, И.П. Павлов, А.М. Ляпунов, А.А. Марков, А.Н.Колмогоров и др.
Кибернетика— это наука об управлении и связи, оптимальном управлении, о восприятии, хранении ипереработке информации, об алгоритмах переработки информации, о причинных сетях. Каждое из этих определений подчеркивает существенную сторону кибернетики.
Область применения кибернетикиопределил Н. Винер — это машины, живые организмы и их объединения.
Исходя из вышесказанного, кибернетика— это наука об управлении в машинах, живых организмах и их объединениях на основе получения, хранения, переработки и использования информации. Кибернетика — это наука об управлении в кибернетических системах. Кибернетические системы — это сложные динамические системылюбой природы (технические, биологические, экономические, социальные, административные) с обратной связью. Сложными динамическими системаминазываются такие системы, которые содержат в себе множество более простых, взаимодействующих друг с другом систем и элементов, которые меняются, т.е. под воздействием определенных процессов переходят из одного устойчивого состояния в другое.
Сущность управления, базирующегося на использовании обратной связи, было разработано задолго до возникновения кибернетики — в рефлекторной теории И.М. Сеченова и И.П. Павлова. Идея обратной связи была использована при создании автоматических регуляторов — поплавковых регуляторов Уатта.
Кибернетика сформулировала принцип обратной связи: без обратной связи невозможно управление сложными и сложнодинамическими системами. В настоящее время этот принцип сознательно кладется в основу конст-
руирования станков-автоматов, ЭВМ и других технических устройств. С учетом принципа обратной связи организуется управление (руководство) предприятия со стороны министерства, промышленными предприятиями — со стороны дирекции («летучки»), по той же схеме ректор осуществляет руководство преподавателем и группой, студенческими коллективами, а преподаватель — студентами и т.д. (дети — родители).
Для кибернетики характерен макроподход: она ответвляется от внутреннего строения системы и рассматривает ее как единое целое, некий «черный ящик», способный функционировать с помощью потоков информации. Это и есть информативный принцип кибернетики. Теория информации— раздел кибернетики, занимающийся методами описания, оценки, хранения, передачи и использования информации. Первые исследования в этой области были проведены Р. Фишером (работы по математической статистике), Р. Хартли (запоминающие устройства, передача информации по каналам связи). Вероятностная теория информации окончательно нашла свое применение и оформление к работах К. Шеннона (1948 г.). Рассматривая зависимость информации на выходе от информации на входе системы, он разработал принцип функциональной связи.
Кибернетика использует и микроподход:она предполагает определение внутреннего строения системы управления, выявление ее основных элементов, их взаимосвязи, алгоритмов их работы и возможность синтезировать из этих элементов системы управления.
Кибернетику подразделяют на:
■ теоретическую;
■ техническую и
■ прикладную.
Теоретическая кибернетикасвязана с разработкой аппарата и методов исследования систем управления любой природы. Она связана с машинным моделированием на ЭВМ. Моделирование на ЭВМ ставит теоретическую кибернетику в особое положение по отношению к другим наукам: она дает принципиально новый подход и метод исследования практически всех наук: естественных, технических, гуманитарных. В этом она сходна с математикой. Но кибернетика — это не математика, так как имеет свой предмет исследования — системы управле-
272
ния. Создаются новые научные направления — математическая логика, теория вероятностей, вычислительная математика, теория информации, теория кодирования, теория алгоритмов и т.д. В самой кибернетике возникли такие разделы, как теория автоматов, теория формальных языков и грамматик, теория распознавания образов, теория самообучающихся и самоорганизующихся систем, теория игр, теория статистических решений и т.п. Машинное моделирования позволяет исследовать объекты на основе математической модели.
Техническая кибернетика— это конструирование и эксплуатация технических средств, применяемая в управляющих и вычислительных устройствах. Одна из главных проблем здесь — это проблема «человек—машина», т.е. изучение автоматических систем управления (АСУ), где обязательно принимает участие человек-оператор. Здесь она пересекается с инженерной психологией. Основные проблемы, стоящие перед технической кибернетикой, — это распознавание образов, создание читающих автоматов, анализ ситуаций, характеризующих технический процесс, разработка диагностических устройств.
Прикладная кибернетикасодержит приложение двух предыдущих подразделов кибернетики к решению задач, относящихся к частным системам в биологии, медицине, экономике, промышленности, транспорте. Поэтому выделяют психологическую, биологическуюи другие виды кибернетики.
Таким образом, в кибернетике скрестились почти все виды отраслей знаний — это целое направление в науке, занимающейся исследованием общих принципов управления и способов использования их в технике.
16.1.1.2. Самоорганизующиеся системы
Сложнодинамические системычасто представляют собой самоорганизующиеся системы. В зависимости от выделения той или иной ведущей группы свойств их также называют саморегулирующимися, самонастраивающимися, самообучающимися, самоалгоритмизующимисясистемами.
Самоорганизующимисяназывают такие системы, которые способны при изменении внешних или внутренних условий их функционирования и развития сохра-
нять или совершенствовать свою организацию с учетом прошлого опыта, сигналы о которой поступают по каналам обратной связи.
Примеры самоорганизующихся систем:отдельная живая клетка, организм, биологическая популяция, человеческий коллектив, машина-автомат, машина-робот.
Так как в сложнодинамических системах имеют место процессы самоуправления и применяются операции управления, то они называются системами управления.Каждая система управлениясостоит из двух систем: управляемойи управляющей.
Управляющая системавоздействует на элементы управляемой системы и приводит ее в соответствие с заданным алгоритмом или целью в новое состояние. Различают три вида системы управления:
■ живые организмы;
■ сложные (с обратной связью) машины;
■ человеческие коллективы.
Заслуга кибернетики в том, что она показала универсальность процессов управления.
Процесс управленияосуществляется в соответствии с задачей или целью управления. Управляющая система вырабатывает и передает по каналу обратной связи сигналы, несущие команды, которые поступают в управляемую систему и приводят ее к изменению. От управляемой системы по каналу обратной связи передаются сигналы, несущие информацию о том, как выполнены команды. В соответствии с этой информацией система вырабатывает новые, корректирующие команды. Это происходит до тех пор, пока цель управления не оказывается достигнутой.
16.1.1.3. Связь кибернетики с процессом самоорганизации
По современным представлениям, в формировании которых существенную роль сыграла кибернетика, процесс самоорганизации представляет собой автоматический процесс, при котором, если говорить о биологических системах, выживают комбинации, выгодные с точки зрения адаптации всего вида и отдельных организмов.
Кибернетика играет существенную роль в понимании общих принципов процессов самоорганизации и
274
дает исследователям методы конструирования различных типов самоорганизующихся систем. Но при этом остается открытым вопрос о физических процессах, происходящих в ходе самоорганизации в самых различных физических, химических, метеорологических, биологических и других системах. Эти процессы, как правило, очень сложны. И все же установление общих закономерностей процессов самоорганизации оказывается возможным.