Определение механических нагрузок

ВВЕДЕНИЕ

Данные методические указания позволяют произвести механический расчет воздушных линий (ВЛ), который является второй частью курсового проекта по дисциплине «Электрические сети и системы». Первая часть курсового проекта «Электрический расчет ВЛ» и исходные данные на КП рассмотрены в методических указаниях № 5171[ 9].

В данных методических указаниях изложены вопросы теории механического расчета ВЛ и пример расчета. В Приложении А приведены справочные данные проводов, изоляторов и опор ВЛ, а также современные укрупненные показатели стоимости электрооборудования подстанций, включая ВЛ.

РАЗДЕЛ 1 Механический расчет воздушных линий

Механический расчет элементов ВЛ должен проводиться по методикам, изложенным в ПУЭ [1].

Механический расчет проводов и тросов ВЛ производится по методу допускаемых напряжений, расчет изоляторов и арматуры – по методу разрушающих нагрузок. По обоим методам расчеты производятся на расчетные нагрузки. Применение других методов расчета должно быть обосновано.

Элементы ВЛ рассчитываются на сочетания нагрузок, действующих в нормальных и аварийных режимах. Сочетания климатических и других факторов в различных режимах работы ВЛ ( наличие ветра, гололеда, значения температуры, количество оборванных проводов или тросов и пр.) определяются в соответствии с требованиями ПУЭ [1] .

Определение механических нагрузок

Механический расчет проводов и тросов включает в себя следующие вопросы :

1) определение единичных и удельных механических нагрузок на провод;

2) определение критических пролетов и условий появления наибольших напряжений для заданного пролета;

3) определение напряжения в материале провода в различных расчетных режимах;

4) определение критической температуры и наибольшей и наименьшей стрелы провеса fнб и fнм.

5) определение тяжения провода при обрыве провода, определение прогиба опоры.

Механические нагрузки, действующие на провода и тросы ВЛ, определяются собственным весом провода, величиной ветрового напора и дополнительной нагрузкой, обусловленной гололедом. Рассчитываются единичные нагрузки, обозначаемые Р, и удельные нагрузки, обозначаемые g.

Единичной называют равномерно распределенную нагрузку по длине пролета на 1м длины провода, Н/м.

Удельной называют нагрузку, которую провод длиной 1м испытывает на 1мм² своего поперечного сечения , 107 Н/ м³.

Расчетные нагрузки от ветра и гололеда имеют вероятностный характер, и при их определении используются результаты статического анализа.

Единичная нагрузка, вызванная собственным весом провода Р1 , Н/м, определится по формуле

Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Р1 = g × m × 10-3, (1.1)

Р1 (g1)

где g – ускорение свободного падения, g = 9,81 м/с2;

m – погонная масса провода , кг/км, определяется по табл.1 Приложения А данного пособия .

Единичная нормативная гололедная нагрузка РНГ , Н/м, определится по формуле

РНГ = p Ki ×Kd×bЭ (d + Ki Kd bЭ) g× r × 10-3 , (1.2)

где Ki и Kd - коэффициенты, учитывающие изменение толщины стенки гололеда по высоте и в зависимости от диаметра провода, принимаемые по табл. 2 [пр.А];

bЭ -нормативная толщина стенки гололеда, мм, принимается по табл. 3 [пр.А] ;

d – диаметр провода, мм;

g – ускорение свободного падения , принимаемое равным 9,81 м/с2;

r - плотность льда, принимаемая 0,9 г/см3 ,[1].

Единичная расчетная гололедная нагрузка Р2 , Н/м , определится по формуле

 
  Определение механических нагрузок - student2.ru

Определение механических нагрузок - student2.ru Р2 = РНГ ×g nw ×gp ×gf ×gd , (1.3)

 
  Определение механических нагрузок - student2.ru

Р2(g2) где РНГ - нормативная линейная гололедная нагрузка , Н/м;

g nw - коэффициент надежности по ответственности, принимаемый для линий напряжением до 220кВ равным 1,0 ( для ВЛ 330-750 кВ -1,3);

gp - региональный коэффициент, принимаемый равным от 1,0 до 1,5 на основании опыта эксплуатации ;

gf - коэффициент надежности по гололедной нагрузке, равный :

1,3 для районов по гололеду I и II,[1];

1,6 для районов по гололеду I I I и выше,[1];

gd – коэффициент условий работы, равный 0,5 ,[1].

Нагрузка, обусловленная весом провода и гололедом

Р3 = Р12 (1.4)

Нормативная ветровая нагрузка на провода (тросы) Р’НВ, Н, без гололеда определится по формуле

Р’НВ = aW × Kl × KW ×CX ×W0× F0× sin2j , (1.5)

где aW - коэффициент, учитывающий неравномерность ветрового давления по пролету ВЛ, принимаемый по табл. 4 в зависимости от ветрового давления W , [1 ];

Kl - коэффициент, учитывающий влияние длины пролета на ветровую нагрузку, принимаемый из таблицы:

Длина пролета , м £ 50 ³ 250
Коэффициент Kl 1,2 1,1 1,05 1,0

Промежуточное значение Kl определяется линейной интерполяцией.

KW - коэффициент, учитывающий изменение ветрового давления по высоте в зависимости от типа местности и hпр, определяемый по табл.5, [пр.А ];

CX - коэффициент лобового сопротивления, принимаемый равным:

1,1 – для проводов , свободных от гололеда, диаметром 20мм и более;

1,2 – для всех проводов и тросов, покрытых гололедом и свободных от гололеда, диаметром менее 20мм;

W0 – нормативное ветровое давление, соответствующее 10-минутному интервалу осреднения скорости ветра (n0), на высоте 10м над поверхностью земли и принимаемый в соответствии с картой районирования территории России по ветровому давлению, принимается по табл.6, Па [пр.А];

F0 - площадь продольного диаметрального сечения провода, м2 ;

j - угол между направлением ветра и осью ВЛ(ветер следует принимать направленным под углом 90° к оси ВЛ).

Ветровое давление на провода определяется по высоте расположения приведенного центра тяжести всех проводов.

Поскольку на данном этапе расчетов еще не определена стрела провеса провода и профиль трассы, то можно принять ориентировочно в качестве hср нормативное расстояние до нижней траверсы , табл.7[пр.А] .

Площадь продольного диаметрального сечения провода без гололеда F0, м2, определяется по формуле

F0 = d × L × 10-3 , (1.6)

где d – диаметр провода, мм;

L - длина пролета, м.

Единичная нормативная ветровая нагрузка на провода (тросы) РНВ, Н/м, без гололеда определится по формуле

РНВ = Р’НВ / L

Нормативная ветровая нагрузка на провода (тросы) Р’НВГ, Н, с гололедом определится по формуле

Р’НВГ = aW × Kl × KW ×CX ×WГ× FГ× sin2j , (1.7)

где CX - коэффициент лобового сопротивления, принимаемый равным 1,2 ;

WГ - нормативное ветровое давление при гололеде с повторяемостью один раз в 25лет, принимается WГ = 0,25 W0 ;

FГ - площадь продольного диаметрального сечения провода, м2 (при гололеде с учетом условной толщины стенки гололеда bу );

Площадь продольного диаметрального сечения провода Fг, м2 , определяется по формуле

Fг = ( d + 2Ki Kd bУ ) L × 10-3 , (1.8)

где d – диаметр провода, мм;

Ki и Kd - коэффициенты, учитывающие изменение толщины стенки гололеда по высоте и в зависимости от диаметра провода, определяются по табл. 2[пр.А];

bУ - условная толщина стенки гололеда , мм, принимается равной нормативной толщине bЭ по табл. 3[пр.А];

Единичная нормативная ветровая нагрузка на провода (тросы) РНВГ, Н/м, с гололедом определится по формуле

РНВГ = Р’НВГ / L

Единичная расчетная ветровая нагрузка на провода (тросы) без гололеда Р4 , Н/м, определится по формуле

Р4 = РНВ ×gН × gР × gf , (1.9)

Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Р4 (g4)

где РНВ – единичная нормативная ветровая нагрузка, Н/м;

gН - коэффициент надежности, принимаемый равным :

1,0 – для ВЛ до 220кВ; 1,1 - для ВЛ 330-750 кВ;

gР - региональный коэффициент, принимаемый от 1,0 до 1,3 на основании опыта эксплуатации;

gf - коэффициент надежности по ветровой нагрузке, равный 1,1.

Единичная расчетная ветровая нагрузка на провода (тросы) с гололедом Р5 , Н/м, определится по формуле

Р5 = РНВГ ×gН × gР × gf , (1.10)

Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Р5(g5)

где РНВГ – единичная нормативная ветровая нагрузка, Н/м;

Единичная нагрузка, определяемая весом провода без гололеда и ветром

Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Р4 _________

Р6 = Ö Р12 + Р4 2 (1.11)

Р1 Р6

Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Единичная нагрузка, определяемая весом провода с гололедом и ветром

_________

Определение механических нагрузок - student2.ru Р5 Р7 = Ö Р32 + Р5 2 (1.12)

Р3 Р7

Определяем удельные нагрузки по формуле

g = Р / F , (1.13)

где Р – единичная нагрузка , Н/м;

F –расчетное сечение провода ( суммарное алюминий и сталь) , мм2 .

Результаты расчетов по формулам сводим в таблицу 1.1.

Таблица 1.1

  Р1 Р2 Р3 Р4 Р5 Р6 Р7
Р, Н/м              
g, 107 Н/м3              

1.2 Уравнение состояния провода

Провод, закрепленный в двух точках на одинаковой высоте и испытывающий равномерно распределенную нагрузку, можно рассматривать как гибкую нить, принявшую форму цепной линии. Напряжение в любой точке такой нити будет

обусловлено только растяжением и направлено по касательной к кривой (рис.1.1)

Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru А Б

Определение механических нагрузок - student2.ru f

Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru Н Н

h

 
  Определение механических нагрузок - student2.ru

L

Рисунок 1.1

  1. Расстояние по горизонтали между точками подвеса А и Б называется пролетом(L) .
  2. Расстояние по вертикали в середине пролета между проводом и прямой АБ, соединяющей точки провеса, называется стрелой провеса ( f ).
  3. Сила, действующая в любой точке провода, называется тяжением ( Т). Тяжение в низшей точке кривой провисания, направленное горизонтально, обозначается буквой Н .
  4. Сила, действующая на единицу сечения провода, называется напряжением ( s ).

Тяжение по проводу при любых условиях работы и в каждой его точке направлено по касательной к кривой провисания провода и определяется выражением

Т = s F, (1.14)

где F – полное поперечное сечение провода, мм2;

s - напряжение , Н/ мм2 .

При закреплении в натяжных гирляндах на опорах анкерного типа тяжение провода передается на опоры, вызывая в опорах силу, равную по величине, но противоположную по направлению; эта сила называется реакцией.

Напряжение не должно превосходить допускаемое [1]. Напряжение в точках крепления А и Б не должно превосходить 105% допускаемого напряжения для алюминиевых и 110% для сталеалюминевых проводов.

При равной высоте точек подвеса

sА = sБ = sо + g ¦ , (1.15)

где sо - напряжение в низшей точке провисания провода, Н/ мм2 ;

¦ - стрела провеса провода при удельной нагрузке g, м.

Комбинированные, в том числе сталеалюминевые провода, рассчитываются по полному тяжению, действующему по проводу, по суммарному сечению алюминиевой и стальной части, по модулю упругости, температурному коэффициенту линейного расширения и допускаемому напряжению провода в целом [1].

При расчете проводов следует принимать такие сочетания климатических условий, которые дают наиболее невыгодные по механическим нагрузкам значения напряжения в проводе в одних случаях и максимальные величины стрел его провеса в других случаях.

Расчет ВЛ по нормальному режиму работы необходимо производить для сочетания следующих условий :

1. Высшая температура t+ , ветер и гололед отсутствуют (формула 1.1).

2. Низшая температура t _ , ветер и гололед отсутствуют ( формула 1.).

3. Среднегодовая температура t сг , ветер и гололед отсутствуют (формула 1.1).

4. Провода и тросы покрыты гололедом ( формула 1.3) , температура при гололеде минус 5°С, ветер отсутствует.

5. Ветер ( формула 1.9), температура при W0 минус 5°С , гололед отсутствует.

6. Провода и тросы покрыты гололедом , ветер при гололеде на провода (формула 1.10), температура при гололеде минус5°С.

7. Расчетная нагрузка от тяжения проводов определяется при расчетных ветровых (формула 1.10) и гололедных (формула 1.3) нагрузках, умноженных на коэффициент надежности по нагрузке от тяжения (gf = 1,0 …1,3 ).

Расчет ВЛ по аварийному режиму необходимо производить для сочетания следующих условий :

1. Низшая температура t _ , ветер и гололед отсутствуют (формула 1.1).

2. Среднегодовая температура t сг , ветер и гололед отсутствуют (формула 1.1).

3. Провода и тросы покрыты гололедом (формула 1.3) , температура при гололеде минус 5°С, ветер отсутствует.

4. Расчетная нагрузка от тяжения проводов определяется при расчетных ветровых (формула 10) и гололедных (формула 1.3) нагрузках, умноженных на коэффициент надежности по нагрузке от тяжения (gf = 1,0 …1,3 ).

Для решения этих задач зависимость напряжений от нагрузки и температуры выражают в виде уравнения, которое называется уравнением состояния провода.

Для вывода уравнения состояния рассмотрим провод в изолированном анкерном пролете с точками подвеса на одной высоте. Для начального состояния введем следующие обозначения :

L0 - длина пролета, м; g0 – удельная нагрузка, Н/(м × мм2) ; t0 – температура окружающей среды, ° С; s0 – напряжение в низшей точке провода, Н/ мм2 .

Для искомого состояния примем те же обозначения, но без индексов.

В результате алгебраических преобразований с учетом относительного упругого удлинения провода получим уравнение состояния в виде

g2× L2 Е g02× L2 Е

s - ----------- = s0 - -------------- - aЕ (t - t0 ), (1.16)

24× s2 24× s02

где Е – модуль упругости материала провода , Па ,(103 Н/мм2), табл. 8,[ пр.А ];

a - температурный коэффициент линейного расширения, 10 –6 º С-1, табл.8, [пр.А ].

С помощью этого уравнения можно найти напряжения в проводе в любых требуемых условиях на основании известных напряжений, нагрузок и температур в начальном состоянии. При подстановке отрицательных температур необходимо строго соблюдать правило знаков.

В общем случае уравнение состояния можно представить в виде кубического уравнения

s2(s + А) = В, (1.17)

где А и В – коэффициенты кубического уравнения.

g02×Е × l2 g2×Е × l2

А = - s0 + -------------- + aЕ ( t - t0 ) В = -----------

24× s02 24

Во всех режимах напряжения должны быть меньше допустимых.

ПУЭ устанавливают допустимое напряжение в материале sдоп в процентах от предела прочности [1 ].

sдоп = sв /100,

где sВ – временное сопротивление (предел прочности), т.е. такое напряжение, при котором провод разрывается, Н/мм2 [ 1].

Эти значения различны для режимов наибольшей нагрузки, наименьшей температуры и среднегодовой температуры.

Предел прочности по растяжению sВ может быть найден по выражению

sВ = R / F , (1.18)

где R – разрывное усилие провода, Н, табл.1, [пр.А ];

F – расчетное сечение провода, мм2.

По ПУЭ допускаемое напряжение в проводах рассчитывается для нормального и аварийного режимов .

Выбор допускаемого напряжения провода производится на основе определения критических пролетов.

1.3 Критические пролеты проводов

При ограничении допускаемых напряжений для трех режимов возникает вопрос, какой из этих режимов следует принимать в качестве исходного. Этот вопрос решается путем вычисления так называемых критических пролетов для различных режимов.

Критический пролет в общем виде определяется по формуле

_______________________

4s n 1,5[(s n - s m) b+ a(t n - t m )]

lк = ------ Ö -------------------------------------- (1.19 )

gm (gn /gm)2 - (sд / s m ) 2

где b = Е-1 – коэффициент упругого удлинения провода, мм2 / Н.

Различают три критических пролета :

1) lк1 - это пролет такой длины, для которого напряжение провода в режиме среднегодовых температур равно допустимому sэ, а в режиме низшей температуры равно допустимому s _, т.е определяет переход от расчетных условий при низшей температуре к среднегодовым условиям. При этом

gn = g1 ; t n = t э ; s n = sэ ; gm = g1; t m = t _; s m = s _

2) lк2 - имеет место в том случае, когда в режиме максимальных внешних нагрузок в режиме низшей температуры напряжение в проводе равны допустимым sг, т.е. определяет переход от расчетных условий при низшей температуре к условиям наибольшей нагрузки. При этом

gn = g7 ; t n = t г ; s n = sг ; gm = g1; t m = t _; s m = s _

3) lк3 - имеет место в том случае, когда напряжение в режиме максимальных внешних нагрузок равно допустимому sг , а в режиме среднегодовых нагрузок равно допустимому sэ , т.е. определяет переход от расчетных среднегодовых условий к условиям наибольшей нагрузки. При этом

gn = g7 ; t n = t г ; s n = sг ; gm = g1; t m = t э; s m = s э

Для сталеалюминевых проводов критические пролеты можно определить по следующим формулам [ 8,с .60]:

________________________

4,46 s_ a Е (tэ - t_ ) – 0,325 s_

l= ----------- Ö ------------------------------------- (1.20)

g1 Е

________________________

4,9 sг a Е (tг - t_ ) + 0,119 sг

Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru l= ----------- Ö ------------------------------------- (1.21)

g1 Е (g7 / g1)2 – 1,29

________________________

4,9 sг a Е (tг - tЭ ) + 0,405 sг

Определение механических нагрузок - student2.ru Определение механических нагрузок - student2.ru l= ----------- Ö ------------------------------------- (1.22)

g1 Е (g7 / g1)2 – 2,82

где s_ - допускаемое напряжение при низшей температуре, Н/мм2 , табл.9 [пр.А];

sг - допускаемое напряжение при наибольшей нагрузке, Н/мм2,табл.9 [пр.А];

sэ – допускаемое напряжение при среднегодовой температуре, Н/мм2 ,табл.9 [пр.А].

Полученные значения длин критических пролетов следует сравнить с действительной величиной пролета и сделать выводы. Рекомендуется в первую очередь определить lк2 и сравнить его с действительным пролетом.

Далее могут возникнуть следующие случаи :

1) Если lк1<lк2< lк3 ,то расчетным пролетом является lк1; lк3 .

2) Если lк1 > lк2 >lк3 ,то расчетным пролетом является lк2.

3) Если lк1 – мнимый , lк2<lк3 ,то расчетным пролетом является lк3.

4) Если lк3 – мнимый , то расчетным пролетом является lк1.

После определения критических пролетов необходимо рассчитать уравнения состояния и определить значения напряжений в проводе в различных режимах .

Если 1 случай, то уравнение состояния для расчета провода с учетом критических пролетов будет иметь следующий вид при соотношении фактического и критического пролетов :

1) Если l > lк3

g2× L2 Е gг2× L2 Е

s - ----------- = sг - -------------- - aЕ ( t - tг ), (1.23)

24× s2 24× sг2

2) Если l< lк1

g2× L2 Е g12× L2 Е

s - ----------- = s__ - -------------- - aЕ ( t - t__ ), (1.24)

24× s2 24× s__2

3) Если lк1<l<lк3

g2× L2 Е g12× L2 Е

s - ----------- = sэ - -------------- - aЕ ( t - tэ ), (1.25)

24× s2 24× sэ2

Если 2 случай, то уравнение состояния для расчета провода с учетом критических пролетов будет иметь следующий вид при соотношении фактического и критического пролетов :

-при l< lк2 – уравнение (1.24)

-при l > lк2 – уравнение (1.23)

Если 3 случай, то уравнение состояния для расчета провода с учетом критических пролетов будет иметь следующий вид при соотношении фактического и критического пролетов :

-при l< lк3 – уравнение (1.25)

-при l > lк3 – уравнение (1.23)

Если 4 случай, то уравнение состояния для расчета провода с учетом критических пролетов будет иметь следующий вид при соотношении фактического и критического пролетов :

-при l< lк1 – уравнение (1.24)

-при l > lк1 – уравнение 1.(25)

Расчет проводится для режимов :

1) Максимальных температур (t =t+; g = g1).

2) Минимальных температур (t =t-; g = g1).

3) Среднегодовых температур (t =tэ; g = g1).

4) Гололеда (t =tг; g = g3).

5) Режима максимальных нагрузок (t =tг; g = g7).

Соотношения , определяющие исходные условия для расчета проводов сводим в таблицу 1.2.

Таблица 1.2

Случай Соотношение пролетов Исходные напряжения Расчетный критический пролет Формулы
lк1< lк2< lк3 s_,sэ, sг lк1 и lк3 l > lк3 (1.23) l< lк1 (1.24) lк1<l<lк3 (1.25)
lк1 > lк2 >lк3 s_, sг lк2 l< lк2 (1.24) l > lк2 (1.23)
lк1 – мнимый , lк2 < lк3 sэ, sг lк3 l< lк3 (1.25) l > lк3 (1.23)
lк3 – мнимый lк1 < lк2 s_,sэ, lк1 l< lк1 (1.24) l > lк1 (1.25)

1.4 Стрела провеса

Одной из величин, определяющих высоту опор, является стрела провеса. При достаточно больших отношениях длины пролета L к стреле провеса f (что соответствует действительности) кривая провеса провода очень близка к параболе вида y = h + kx2 . При совмещении начала координат с низшей точкой провеса (h =0) уравнение параболы примет вид y = kx2 . В отечественной практике расчеты проводов производятся по параболе; исключением являются расчеты проводов с очень большими пролетами (800-1000 м).

Исходя из этого уравнения и полагая, что длина провода примерно равна длине пролета l » L , при одинаковой высоте точек подвеса стрела провеса определится (при пролете до 600 м)

g × L 2

f = --------- (1.26)

8× s ,

где g - удельная нагрузка при конкретных климатических условиях, Н/ м ×мм2;

s - напряжение при растяжении в низшей точке провода, Н /мм2.

Максимальная стрела провеса fнб может возникнуть только при отсутствии ветра при условии:

1) при гололеде, когда провод испытывает наибольшую вертикальную нагрузку (g3);

fнб = f3 = g3 × l 2 / 8× s3 (1.27)

2) при наивысшей температуре воздуха, когда провод испытывает вертикальную нагрузку только от собственной массы (g1).

fнб = f1 = g1 × l 2 / 8× s+ (1.28)

Температура, при которой стрелы провеса равны f3 = f1, называется критической температурой

sг(1 - g1 / g3 )

tК = tг + --------------------- (1.29)

a Е

Если t+ > tК, то fнб = f1 (1.30)

Если t+ < tК, то fнб = f3 (1.31)

Длина провода в пролете Lпр, м, определится как длина дуги параболы, (погрешность составляет 0,1%)

8× f 2 g2× L 3

Lпр = L + ------- = L + ------------- (1.32)

3× L 24× s2

Наименьшая стрела провеса будет при минимальных температурах , но без гололеда

g 1× L 2

fнм = --------- (1.33)

8× s _ ,

Кривые строятся в координатах L, h , за начало координат принимается точка с координатами L /2 и h = hТР - lг - fнб (fнм).

Масштаб по горизонтали и вертикали может быть разным.

1.5 Выбор подвесных изоляторов

Выбор типа и материала изоляторов производится на основании требований ПУЭ с учетом климатических условий и условий загрязнения [1, п.2.5.98 ].

На ВЛ 35- 220кВ рекомендуется применять стеклянные или полимерные изоляторы. Выбор количества изоляторов в гирляндах производится в соответствии с [1,гл.1.9].

Изоляторы и арматура выбираются по нагрузкам в нормальных и аварийных режимах ВЛ с учетом климатических условий. Расчетные усилия в изоляторах и арматуре не должны превышать значений разрушающих нагрузок (механической или электромеханической), установленных техническими условиями, деленных на коэффициент надежности по материалу gМ. :

1) в нормальном режиме

- при максимальных нагрузках gМ = 2,5;

- при эксплуатационных нагрузках для поддерживающих гирлянд gМ = 5,0;

- для натяжных гирлянд gМ = 6,0.

2) в аварийном режиме (для напряжения 330кВ и меньше) gМ = 1,8.

Расчетный коэффициент надежности по материалу определится

g = Рразр / Ррасч £ gМ (1.34 )

где Рразр – допустимая разрушающая нагрузка, Н;

Ррасч - расчетная разрушающая нагрузка, Н.

Порядок расчета :

1) Выбираем тип и число изоляторов в соответствии с условиями окружающей среды [пр.А, табл. 11 ].

2) Определяем строительную высоту изолятора lиз, разрушающую нагрузку Рразр, массу изолятора mиз [пр.А, табл. 12 ].

3) Определяем длину гирлянды изоляторов lг, м

lг = n × lиз, (1.35)

где n – число изоляторов;

lиз - строительная высота изолятора, см.

4) Определяем нагрузку, действующую на гирлянду изоляторов. Она состоит из веса гирлянды и веса провода. Расчет производим для двух режимов (без ветра и гололеда Р1 и с ветром и гололедом Р7) и выбираем максимальную нагрузку.

Р1(7 ) расч = К 1(7) × (Р1(7 ) × Lвес + Gг), (1.36)

где К 1(7) - нормативный коэффициент запаса :

К1 = 5 (режим без ветра и гололеда);

К7 = 2,5 (режим с ветром и гололедом) ;

L вес - весовой пролет, т.е. расстояние между низшими точками кривых провисания в пролетах, примыкающих к рассматриваемой опоре, м.

L вес = 1,25 L (рис1.2)

Определение механических нагрузок - student2.ru

Определение механических нагрузок - student2.ru

Определение механических нагрузок - student2.ru

L вес

Рисунок 1.2

Gг - вес гирлянды изоляторов, H.

Gг = n × mиз × g, (1.37)

где mиз – масса изолятора, кг;

g – ускорение свободного падения, g = 9,81 м/c2.

5) Определяем коэффициент надежности по материалу g для режима с наибольшей расчетной нагрузкой, полученное значение сравниваем с нормативным gМ = 1,8 [1].

5) Минимально допустимое расположение траверсы опоры определится

hТР = hГ + fнб + lг , (1.38)

где hГ - габарит линии ,т. е. минимальное расстояние от провода до земли ,м [1, т.2.5.20, 2.5.22 ].

6) По табл. 9 уточняем тип опоры [9,с.383].

Выбор опор

Опоры, фундаменты и основания ВЛ должны рассчитываться на сочетание расчетных нагрузок нормальных режимов по первой и второй группам предельных состояний:

Перваягруппа включает предельные состояния, которые ведут к потере несущей способности элементов или к полной их непригодности к эксплуатации, т.е к их разрушению. К той группе относятся состояния при наибольших внешних нагрузках и при низшей температуре.

Втораягруппа включает предельные состояния, при которых возникают недопустимые деформации, перемещения или отклонения элементов, нарушающие нормальную эксплуатацию, к этой группе относятся состояния при наибольших погибах опор.

Нагрузки, воздействующие на строительные конструкции ВЛ, в зависимости от продолжительности воздействия подразделяются на постоянные и временные

( длительные, кратковременные, особые).

К постоянным относятся - собственный вес провода, строительных конструкций, гирлянд изоляторов, тяжение проводов и тросов при среднегодовой температуре и отсутствии ветра и гололеда.

К длительным нагрузкам относятся нагрузки, создаваемые воздействием неравномерных деформаций оснований, не сопровождающихся изменением структуры грунта.

К кратковременным нагрузкам относятся – давление ветра на провода с гололедом и без, вес гололеда, тяжение проводов и торосов сверх их значений при среднегодовой температуре и т.д.

К особым нагрузкам относятся нагрузки, возникающие при обрыве проводов или тросов, а также нагрузки при сейсмических воздействиях.

Опоры могут быть жесткими (металлические) и гибкими (деревянные).У жестких опор при обрыве провода из-за неравномерного тяжения слева и справа будет отклоняться только гирлянда. У гибких опор наблюдается прогиб опоры (опора отклоняется в ту же сторону, что и гирлянда).

Этот факт влияет на величину стрелы провеса и его надо учитывать при выборе опор.

Наши рекомендации