Основные свойства водной среды

Экология как наука.

В современном понимании экология — наука о законо­мерностях формирования, развития и устойчивого функци­онирования биологических систем надорганизменного уров­ня во взаимосвязи со средой обитания. Кроме того, данная наука позволяет определить оптимальные формы взаимо­отношений природы и человеческого общества.

Биологические системы на Земле имеют строгую иерар­хическую структуру, определяемую уровнями организации живого вещества. В соответствии с данными уровнями эко­логию зачастую подразделяют на аутэкологию, синэкологию и демэкологию.

Аутэкология (греч. autos — сам) изучает взаимодей­ствие отдельных организмов или групп этих организмов с окружающей средой. При этом изучается взаимодействие данных объектов с окружающей средой как бы в изоляции от целостной биологической системы, в которую они входят как составные части, для познания основных закономерно­стей этого взаимодействия. Полученные знания позволяют оценить роль одной особи или группы особей в среде оби­тания. Однако их недостаточно для установления основных законов функционирования различных систем надорганиз­менного уровня, а именно сообществ организмов различных видов во взаимодействии между собой и с абиотической средой, и биосферы в целом. Решение упомянутых проблем занимаются демэкология и синэкология.

Демэкология (греч. demos — народ,), или популяцион-ная экология, направлена на изучение биологических систем более высокого уровня — группировок особей одного вида, со­вместно проживающих на определенной территории и спо­собных к устойчивому- воспроизводству (популяций). В этом разделе экологии особи рассматриваются не изолирован­но, а в виде взаимодействующих между собой организмов одного вида в составе популяции, исследуются условия, при которых происходит формирование популяции, изуча­ются внутрипопуляционные группировки, динамика чис­ленности популяции и др.

Синэкология (греч. syn — вместе,), или биоценология, исследует взаимодействие сообществ организмов различных видов между собой, а также с окружающей их абиотической (неживой) средой. Сообщества и окружающая их среда об­разуют систему более высокого иерархического уровня: экосистему. Совокупность всех экосистем планеты образу­ет экосистему наивысшего уровня — биосферу. Различные экосистемы и вся биосфера в целом являются также объектом изучения синэкологии.Биоценология — биологическая дисциплина, изучающая растительные и животные сообщества в их совокупности (живую природу), то есть биоценозы, их строение, развитие, распределение в пространстве и во времени, происхождение. Изучение сообществ организмов в их взаимодействии с неживой природой — предмет биогеоценологии.

Эйдэкология (экология видов) - наименее разработанное направление современной биоэкологии.

В рамках основных разделов при исследовании кон­кретных групп организмов выделяют экологию животных, растений, человека и т.д., а при изучении природных ком­плексов — экологию водоемов, экологию суши, агроэколо­гию и т.д.

Ландша́фтная эколо́гия — отрасль науки, раздел экологии и географии, который изучает пространственное разнообразие и элементы ландшафта (например поля, живые изгороди, группы деревьев, реки или города) и то, как их расположение воздействует на распределение и поток энергии, и индивидуумов в окружающей среде (который, в свою очередь, может непосредственно повлиять на распределение элементов).

На базе уже рассмотренных разделов экологии в послед­ние годы сформировались и бурно развиваются два новых направления: глобальная экология и социоэкология. Объ­ектом изучения глобальной экологии является биосфера в целом. Проблемы взаимодействия природы и общества исследует социоэкология.

С научно-практической точки зрения, экологию делят на теоретическую и прикладную. Развитие промышленности, транспорта, сельского хозяй­ства привело к возникновению ряда факторов, отрицатель­но влияющих на окружающую среду и на человека, поэтому возникло новое направление — прикладная экология (ин­женерная, сельскохозяйственная, промысловая и т.д.).

Прикладная экология – это большой комплекс дисциплин, связанных с разными отраслями деятельности человека и взаимоотношениями между человеком и природой. К основным задачам прикладной экологии относятся: изучение механизмов антропогенных воздействий на природу; разработка принципов рационального использования, сохранения и воспроизводства природных ресурсов; разработка экологических нормативов и стандартов; оптимизация инженерных решений по защите окружающей среды и др. Теоретическая экология является научной основой для прикладной экологии, так как вскрывает общие закономерности организации жизни и функционирования экологических систем и биосферы, что позволяет предотвратить негативные последствия антропогенной деятельности.

ЛЕКЦИЯ №13. СРЕДЫ ОБИТАНИЯ ОРГАНИЗМОВ.

Водная среда обитания.

Обитатели водной среды получили в экологии общее название гидробионтов. Они населяют Мировой океан, континентальные водоемы и подземные воды. В любом водоеме можно выделить различные по условиям зоны.

В океане и входящих в него морях различают прежде всего две экологические области: толщу воды – пелагиаль и дно – бенталь. Обитатели абиссальных и ультраабиссальных глубин существуют во мраке, при постоянной температуре и огромном давлении. Все население дна океана получило название бентоса.

Основные свойства водной среды.

Плотность воды – это фактор, определяющий условия передвижения водных организмов и давление на разных глубинах. Для дистиллированной воды плотность равна 1 г/см3 при 4 °C. Плотность природных вод, содержащих растворенные соли, может быть больше, до 1,35 г/см3. Давление возрастает с глубиной примерно в среднем на 1 · 105 Па (1 атм) на каждые 10 м. Плотность воды обеспечивает возможность опираться на нее, что особенно важно для бесскелетных форм. Плотность среды служит условием парения в воде, и многие гидробионты приспособлены именно к этому образу жизни. Взвешенные, парящие в воде организмы объединяют в особую экологическую группу гидробионтов – планктон («планктос» – парящий). В составе планктона преобладают одноклеточные и колониальные водоросли, простейшие, медузы, сифонофоры, гребневики, крылоногие и киленогие моллюски, разнообразные мелкие рачки, личинки донных животных, икра и мальки рыб и многие другие. Водоросли (фитопланктон) парят в воде пассивно, большинство же планктонных животных способно к активному плаванию, но в ограниченных пределах.. Особую разновидность планктона составляет экологическая группа нейстона («нейн» – плавать) – обитатели поверхностной пленки воды на границе с воздушной средой. Плотность и вязкость воды сильно влияют на возможность активного плавания. Животных, способных к быстрому плаванию и преодолению силы течений, объединяют в экологическую группу нектона («нектос» – плавающий).

Кислородный режим. В насыщенной кислородом воде содержание его не превышает 10 мл в 1 л, это в 21 раз ниже, чем в атмосфере. Поэтому условия дыхания гидробионтов значительно усложнены. Кислород поступает в воду в основном за счет фотосинтетической деятельности водорослей и диффузии из воздуха. Поэтому верхние слои водной толщи, как правило, богаче этим газом, чем нижние. С повышением температуры и солености воды концентрация в ней кислорода понижается. В слоях, сильно заселенных животными и бактериями, может создаваться резкий дефицит О2 из‑за усиленного его потребления. Около дна водоемов условия могут быть близки к анаэробным.

Среди водных обитателей много видов, способных переносить широкие колебания содержания кислорода в воде, вплоть до почти полного его отсутствия (эвриоксибионты – «окси» – кислород, «бионт» – обитатель). К ним относятся, например, брюхоногие моллюски. Среди рыб очень слабое насыщение воды кислородом могут выдерживать сазан, линь, караси. Вместе с тем ряд видов стеноксибионтны – они могут существовать лишь при достаточно высоком насыщении воды кислородом (радужная форель, кумжа, гольян).

Солевой режим. Поддержание водного баланса гидробионтов имеет свою специфику. Если для наземных животных и растений наиболее важно обеспечение организма водой в условиях ее дефицита, то для гидробионтов не менее существенно поддержание определенного количества воды в теле при ее избытке в окружающей среде. Излишнее количество воды в клетках приводит к изменению в них осмотического давления и нарушению важнейших жизненных функций. Большинство водных обитателей пойкилосмотичны: осмотическое давление в их теле зависит от солености окружающей воды. Поэтому для гидробионтов основной способ поддерживать свой солевой баланс – это избегать местообитаний с неподходящей соленостью. Пресноводные формы не могут существовать в морях, морские – не переносят опреснения. Позвоночные животные, высшие раки, насекомые и их личинки, обитающие в воде, относятся к гомойосмотическим видам, сохраняя постоянное осмотическое давление в теле независимо от концентрации солей в воде.

Световой режим. Света в воде гораздо меньше, чем в воздухе. Часть падающих на поверхность водоема лучей отражается в воздушную среду. Отражение тем сильнее, чем ниже положение Солнца, поэтому день под водой короче, чем на суше. В темных глубинах океана в качестве источника зрительной информации организмы используют свет, испускаемый живыми существами. Свечение живого организма получило название биолюминесценции. Реакции, используемые для генерации света, разнообразны. Но во всех случаях это окисление сложных органических соединений (люциферинов) с помощью белковых катализаторов (люцифераз).

Способы ориентации животных в водной среде. Жизнь в постоянных сумерках или во мраке сильно ограничивает возможности зрительной ориентации гидробионтов. В связи с быстрым затуханием световых лучей в воде даже обладатели хорошо развитых органов зрения ориентируются при их помощи лишь на близком расстоянии.

Звук распространяется в воде быстрее, чем в воздухе. Ориентация на звук развита у гидробионтов в целом лучше, чем зрительная. Ряд видов улавливает даже колебания очень низкой частоты (инфразвуки), возникающие при изменении ритма волн, и заблаговременно спускается перед штормом из поверхностных слоев в более глубокие (например, медузы). Многие обитатели водоемов – млекопитающие, рыбы, моллюски, ракообразные – сами издают звуки. Ряд гидробионтов отыскивает пищу и ориентируется при помощи эхолокации – восприятия отраженных звуковых волн (китообразные). Многие воспринимают отраженные электрические импульсы, производя при плавании разряды разной частоты. Ряд рыб использует электрические поля также для защиты и нападения (электрический скат, электрический угорь и др.).

Для ориентации в глубине служит восприятие гидростатического давления. Оно осуществляется при помощи статоцистов, газовых камер и других органов.

Фильтрация как тип питания. Многие гидробионты обладают особым характером питания – это отцеживание или осаждение взвешенных в воде частиц органического происхождения и многочисленных мелких организмов.

Форма тела. Большинство гидробионтов имеют обтекаемую форму тела.

Наши рекомендации