Глава 3. Гигиена окружающей среды 3 страница

Суммарное содержание бикарбонатов, сульфатов и хлоридов кальция и магния определяет жесткость воды. Вода с общей жесткостью более 7 мг/л имеет неблагоприятные гигиенические свойства. Жесткая вода малопригодна для стирки и мытья, требует большого расхода мыла. Мясо, овощи и бобовые плохо развариваются в жесткой воде. Употребление жесткой воды приводит к нарушению водно-солевого баланса, развитию мочекаменной болезни — отложению камней в почках и мочевом пузыре.

Высокоминерализованную воду с повышенным уровнем жесткости получает население Ростовской и Тюменской областей, Республики Татарстан и др.

В воде источников нецентрализованного водоснабжения часто обнаруживаются нитраты и нитриты. Избыточные количества нитратов в питьевой воде вызывают у детей раннего возраста, находящихся на искусственном вскармливании, водно-нитратную метгемоглобинемию. Клинические симптомы метгемоглобинемии обусловлены кислородным голоданием вследствие присоединения нитритов к гемоглобину и образованию метгемоглобина. Заболевание развивается при концентрациях нитратов выше 45 мг/л. Обычные концентрации нитратов и нитритов не представляют опасности для здоровья взрослого населения и детей старшего возраста. У детей раннего возраста (36 мес) ферментная система еще полностью не сформировалась, а микроорганизмы, присутствующие в желудочно-кишечном тракте грудных детей, способствуют переходу нитратов в нитриты, что и приводит к развитию нитратной метгемоглобинемии.

Кроме того, нитраты обладают также мутагенным и эмбрио-токсическим эффектами и могут преобразовываться в канцерогенные соединения — нитрозамины — непосредственно в организме человека. Нитрозамины оказывают как политропное, так и выраженное органотропное действие, но у большинства из них отмечается гепатотоксичность и гепатоканцерогенность, некоторые обладают и мутагенными свойствами. Также нитраты вызывают снижение резистентности организма к действию других канцерогенных и мутагенных факторов.

В воде могут обнаруживаться повышенные концентрации металлов. Вода с повышенным содержанием железа имеет неприятный «железистый» привкус и запах, желтоватый цвет. Она не подходит для стирки, так как на белье остаются желтые пятна. Присутствие в питьевой воде железа природного происхождения (часто вместе с марганцем) наиболее характерно для подземных вод, широко используемых в южной и центральной частях России, а также в Сибирском регионе. Кроме того, повышенные концентрации железа имеют место при использовании стальных и чугунных водопроводных труб в результате их коррозии. В частности, от этого страдает население Санкт-Петербурга.

В природных водах помимо макроэлементов присутствуют и микроэлементы: фтор, йод, молибден, бериллий, селен, стронций и др. Избыточное или недостаточное поступление микроэлементов в организм человека вызывает физиологические сдвиги или патологические изменения, развиваются биогеохимические эндемические заболевания.

В России более 90 % населения не получает в необходимом количестве фтор. Особенно характерен недостаток этого элемента для поверхностных источников питьевого водоснабжения на территориях Архангельской, Ленинградской областей, Краснодарского края, Республики Коми и Кабардино-Балкарской Республики. В Кабардино-Балкарской Республике дефицит фтора в воде является фактором повышенной заболеваемости кариесом зубов у 60 % населения.

При избытке фтора в подземных питьевых водах проявляется другое заболевание — флюороз. Это заболевание в столице Республики Мордовия г. Саранске наблюдается у72 % детей школьного возраста. Повышенное содержание фтора в питьевой воде характерно также для территорий Рязанской и Вологодской областей.

Гигиенические требования и нормативы качества питьевой воды. Употребление недоброкачественной питьевой воды может быть причиной: инфекционных и паразитарных заболеваний, связанных с загрязнением водоисточников хозяйственно-фекальными сточными водами или нечистотами из выгребов; заболеваний неинфекционной природы, связанных с особенностями природного химического состава воды; заболеваний неинфекционной природы, связанных с загрязнением воды химическими веществами, попавшими туда в результате промышленного, сельскохозяйственного, бытового и иного загрязнения, добавляемыми в виде реагентов или образующимися в качестве побочных продуктов в процессе обработки воды на водопроводных станциях.

В Российской Федерации с 2002 г. действуют Санитарно-эпидемиологические правила и нормативы — СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества», которые учитывают современное санитарно-эпидемическое состояние окружающей среды и обеспечивают высокие требования к качеству питьевой воды и контролю за ним.

Питьевая вода должна быть безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу и иметь благоприятные органолептические свойства.

Качество питьевой воды должно соответствовать гигиеническим нормативам перед ее поступлением в распределительную сеть, а также в точках водоразбора наружной и внутренней водопроводной сети.

Безопасность питьевой воды в эпидемическом отношении определяется ее соответствием нормативам по микробиологическим и паразитологическим показателям (табл. 3.3).

Безвредность питьевой воды по химическому составу определяется рядом нормативных параметров, к которым относятся:

1) обобщенные показатели (см. ниже) и содержание вредных химических веществ, наиболее часто встречающихся в природных водах на территории Российской Федерации, а также веществ

антропогенного происхождения, получивших глобальное распространение (табл. 3.4

2) содержание вредных химических веществ, поступающих и образующихся в воде в процессе ее обработки в системе водоснабжения (табл. 3.5);

3) содержание вредных химических веществ, поступающих в источники водоснабжения в результате хозяйственной деятельности человека (их более 1200).

Нормативы обобщенных показателей безопасности питьевой воды следующие:

Органолептические свойства воды должны соответствовать следующим нормативам:

На органолептические свойства воды оказывает влияние также содержание веществ, приведенных в табл. 3.4 и 3.5. Не допускается присутствие в питьевой воде различимых невооруженным глазом водных организмов и поверхностной пленки.

Радиационная безопасность питьевой воды определяется соответствием нормативам показателей общей а- и р-активности. Общая а-радиоактивность не должна превышать ОД Бк/л, а общая р-радиоактивность — 1,0 Бк/л.

Гигиенические требования к нецентрализованному (местному) водоснабжению. Нецентрализованное (местное) водоснабжение — это такая система водоснабжения, когда население использует для питьевых и хозяйственных нужд воды подземных источников — колодцев, каптажей (камер накопления воды ключей и родников). Вода источников нецентрализованного водоснабжения употребляется населением без предварительной очистки. Она должна быть безопасной по эпидемическим показателям, безвредной по химическому составу, иметь благоприятные органолептические свойства.

Место для устройства колодца должно располагаться на незагрязненном возвышенном участке, удаленном не менее чем на 50 м от уборных, выгребных ям, сети канализации, скотных дворов, мест захоронения людей и животных, складов удобрений и ядохимикатов, выше (по потоку грунтовых вод) от существующих и возможных источников загрязнения. Для устройства колодцев и каптажей, как правило, должны использоваться водоносные горизонты, защищенные с поверхности водонепроницаемыми породами.

Существуют определенные требования к устройству и оборудованию водозаборных сооружений. Стенки шахты колодца облицовывают водонепроницаемыми креплениями. У края шахты устраивают глиняный замок глубиной 2 м и шириной 1 м. Поверх глины оборудуют отмосток из асфальта, бетона, кирпича или камня с уклоном от колодца. Колодец должен быть обеспечен навесом, крышкой и общественным ведром. Верх колодца должен быть не менее чем на 0,8 м выше поверхности земли. Все это важно для предотвращения попадания в колодец грунтовых, ливневых, талых вод и других загрязнений. Для предупреждения возникновения в воде мути на дне колодца должен быть фильтрующий слой из гравия толщиной 20... 30 см. Не разрешается поднимать воду из колодца личными ведрами, а также черпать воду из общественного ведра своими черпаками. Для подъема воды из шахты вместо общественных ведер предпочтительнее использовать насосы. В радиусе 20 м от колодца не допускаются полоскание и стирка белья, водопой животных и мытье разного рода предметов. Территория вокруг каптажей и колодцев должна содержаться в чистоте и быть ограждена.

Показателем поступления в воду органических загрязнений может служить увеличение по сравнению с результатами предыдущих исследований содержания хлоридов, аммиака, нитритов, нитратов, а также окисляемости.

Аммиак является начальным продуктом разложения органических азотсодержащих (в том числе белковых) веществ и может расцениваться как показатель опасного в эпидемическом отношении свежего загрязнения воды органическими веществами животного происхождения. Соли азотистой кислоты (нитриты) представляют собой продукты окисления аммиака под влиянием микроорганизмов в процессе нитрификации и указывают на давность загрязнения. Соли азотной кислоты (нитраты) — конечные продукты минерализации органических азотсодержащих веществ. Присутствие в воде нитратов без аммиака и солей азотистой кислоты указывает на завершение процесса минерализации. Одновременное содержание в воде аммиака, нитритов и нитратов свидетельствует о незавершенности этого процесса и продолжающемся загрязнении воды. Хлориды в воде водоисточников рассматриваются как показатели бытового загрязнения. Содержание хлоридов б воде поверхностных незагрязненных водоисточников обычно не превышает 20...30 мг/л. Увеличение содержания хлоридов по сравнению с их обычным для данного водоисточника содержанием говорит об опасном загрязнении воды продуктами жизнедеятельности человека (фекалиями, мочой).

Представление о содержании органических веществ в воде дает показатель окисляемости (количество миллиграммов кислорода, израсходованного на химическое окисление органических веществ, содержащихся в 1 л воды).

Увеличение коли-индекса (количество кишечных палочек в 1 л воды) свыше предельно допустимого с одновременным изменением химического состава и органолептических свойств воды указывает на необходимость проведения чистки и профилактической дезинфекции колодца.

Контроль за состоянием воды в источниках нецентрализованного водоснабжения осуществляется центрами Госсанэпиднадзора. При санитарном надзоре за источниками нецентрализованного водоснабжения используются нормативы, установленные СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников»: запах — не более 2 — 3 баллов; привкус — не более 2 — 3 баллов; цветность — не более 30°; прозрачность — не менее 30 см по шрифту; мутность — не более 2 мг/л; нитраты — не более 45 мг/л; коли-индекс — не более 10. Содержание химических веществ не должно превышать ПДК.

Методы улучшения качества питьевой воды. Методы обработки воды, с помощью которых качество воды источников водоснабжения доводится до соответствия требованиям СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества», зависят от качества исходной воды водоисточников и подразделяются на основные и специальные. Основными способами являются осветление, обесцвечивание, обеззараживание.

Под осветлением и обесцвечиванием понимается устранение из воды взвешенных веществ и окрашенных коллоидов (в основном гумусовых веществ). Путем обеззараживания устраняют содержащиеся в воде водоисточника инфекционные агенты — бактерии, вирусы и др.

В тех случаях, когда применения только основных способов недостаточно, используют специальные методы очистки (обезжелезивание, обесфторивание, обессоливание и др.), а также введение некоторых необходимых для организма человека веществ — фторирование, минерализация обессоленных и маломинерализованных вод.

Для удаления химических веществ наиболее эффективным является метод сорбционной очистки с использованием активированного угля, такая очистка значительно улучшает и органолептические свойства воды.

Методы обеззараживания воды подразделяются на химические (хлорирование, озонирование, использование серебра) и физические (кипячение, ультрафиолетовое облучение, облучение у-лучами и др.).

В настоящее время основным методом, используемым для обеззараживания воды на водопроводных станциях является метод хлорирования. Однако все большее распространение получает метод озонирования, в комбинации с хлорированием он дает хорошие результаты по улучшению качества воды.

Наиболее часто для хлорирования воды на водопроводах используют газообразный хлор, однако применяют и другие хлорсодержащие реагенты. В порядке возрастания окислительно-восстановительного потенциала они располагаются следующим образом: хлорамины (RNHC12 и RNH2C1), гипохлориты кальция Са(ОС1)2 и натрия NaOCl, хлорная известь (комплекс Са(С1О)2, СаС12, Са(ОН)2 и молекул воды), газообразный хлор, диоксид хлора С1О2.

Бактерицидный эффект хлорирования объясняется воздействием на протоплазму бактерий хлорноватистой кислоты, которая образуется при введении хлора в воду:

Бактерицидными свойствами обладают также хлоратионы и хлорид-ионы, которые образуются при разложении хлорноватистой кислоты:

Степень диссоциации НОС1 возрастает при повышении активной реакции воды, таким образом, с повышением рН бактерицидный эффект хлорирования снижается.

Действующим началом при хлорировании хлорамином и гипохлоритами является хлорат-ион, а диоксидом хлора — НС1О (хлористая кислота), которая имеет наиболее высокий окислительно-восстановительный потенциал, в силу чего при использовании диоксида хлора достигается наиболее полное окисление и обеззараживание.

При введении хлорсодержащего реагента в воду основное его количество (более 95 %) расходуется на окисление органических и легкоокисляющихся неорганических (соли двухвалентного железа и марганца) веществ, содержащихся в воде; на окисление бактериальных клеток расходуется всего 2...3 % общего количества хлора.

Количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокисляющихся неорганических веществ и обеззараживание бактерий в течение 30 мин, называется хлорпоглощаемостъю воды. Хлорпоглощаемость определяется экспериментально.

По окончании процесса связывания хлора содержащимися в воде веществами и бактериями в воде появляется остаточный активный хлор. Его появление, определяемое титрометрически, является свидетельством завершения процесса хлорирования.

Присутствие в воде, подаваемой в водопроводную сеть, остаточного активного хлора в концентрации 0,3...0,5 мг/л является гарантией эффективности обеззараживания. Кроме того, наличие активного остаточного хлора необходимо для предотвращения вторичного загрязнения воды в разводящей сети. Следовательно, наличие остаточного хлора является косвенным показателем безопасности воды в эпидемическом отношении.

Общее количество хлора, необходимое для удовлетворения хлорпоглощаемости воды и обеспечения наличия необходимого количества (0,3...0,5 мг/л свободного активного хлора при нормальном хлорировании и 0,8...1,2 мг/л связанного активного хлора при хлорировании с аммонизацией) остаточного хлора называется хлорпотребностъю воды.

В практике водоподготовки используется несколько способов хлорирования воды: хлорирование нормальными дозами (по хлорпотребности); хлорирование с преаммонизацией и др.; гиперхлорирование (доза хлора заведомо превышает хлорпотребность).

Процесс обеззараживания обычно является последней ступенью схем обработки воды на водопроводных станциях, однако в ряде случаев при значительном загрязнении исходных вод применяется двойное хлорирование — до и после осветления и обесцвечивания. Для снижения дозы хлора при заключительном хлорировании перспективным является комбинирование хлорирования с озонированием.

При хлорировании нормальными дозами доза хлора устанавливается экспериментально по сумме хлорпоглощаемости и санитарной нормы остаточного хлора (хлорпотребности воды) путем проведения пробного хлорирования. Этот метод наиболее часто применяется на водопроводных станциях. Минимальное время контакта воды с хлором при хлорировании нормальными дозами составляет летом не менее 30 мин, зимой —1ч.

При хлорировании с преаммонизацией в воду помимо хлора вводится аммиак, в результате чего происходит образование хлораминов. Этот метод употребляется для улучшения процесса хлорирования, во-первых, при необходимости транспортировки воды по трубопроводам на большие расстояния, так как остаточный связанный (хлораминный) хлор обеспечивает более длительный бактерицидный эффект, чем свободный; во-вторых, при содержании в исходной воде фенолов, которые при взаимодействии со свободным хлором образуют хлорфенольные соединения, придающие воде резкий аптечный запах. Хлорирование с преаммонизацией приводит к образованию хлораминов, которые из-за более низкого окислительно-восстановительного потенциала в реакцию с фенолами не вступают, поэтому посторонние запахи не возникают. Однако в силу более слабого действия хлораминов остаточное количество его в воде должно быть выше, чем свободного, и составлять не менее 0,8...1,2 мг/л.

Гиперхлорирование воды — хлорирование дозами, заведомо превышающими хлорпотребность воды. Гиперхлорирование используется при неблагоприятной эпидемиологической обстановке, при отсутствии или неэффективной работе водоочистных сооружений, в полевых условиях, при отсутствии возможности проведения пробного хлорирования для определения хлорпотребности.

При проведении хлорирования в качестве источника активного хлора часто используют 1 % раствор хлорной извести. Хлорная известь является нестойким соединением, поэтому необходимо предварительно определить содержание в ней активного хлора.

Для приготовления 1 % раствора хлорной извести берут навеску в 1 г хлорной извести, измельчают ее в фарфоровой ступке пестиком и прибавляют дистиллированную воду до образования кашицы. Затем кашицу разводят дистиллированной водой и переливают содержимое чашки в мерный цилиндр, доводя количество раствора до объема 100 мл. Тщательно перемешивают и оставляют раствор на 10 мин. Используют хлорную известь, содержащую не менее 25 % активного хлора.

Гигиена почвы

Почва — неотъемлемый объект экологической системы. Наряду с солнечным светом, водой и воздухом она является важнейшим компонентом среды обитания человека и всей биоты на Земле.

Почве принадлежит ведущая роль в круговороте веществ в природе. Она представляет собой огромную естественную лабораторию, в которой непрерывно протекают самые разнообразные и сложные процессы разрушения и синтеза неорганических и органических веществ, фотохимические реакции. В почве живут и гибнут патогенные бактерии, вирусы, простейшие и яйца гельминтов. Она является одним из основных путей передачи ряда инфекционных и неинфекционных заболеваний, гельминтозов. Почва может прямо или опосредованно оказывать токсическое, аллергенное, канцерогенное, мутагенное и прочие воздействия на организм человека. Недостаток или избыток микроэлементов в почве вызывает эндемические заболевания. С почвой тесно связано количество и качество продуктов растительного и животного происхождения, т. е. наше питание. Почва существенно влияет на климат местности. Поэтому необходимо знать процессы, протекающие в почве, и их закономерности, чтобы правильно осуществлять профилактику неблагоприятного влияния почвы на здоровье населения.

Почва — природное образование, залегающее между атмосферой и подстилающими породами. Толщина почвы колеблется от нескольких сантиметров до 2 м и более. Почва состоит из материнской породы (минеральные соединения), мертвого органического вещества, гумуса (перегноя), живых организмов, воздуха и воды.

На вертикальном разрезе почвы можно увидеть несколько слоев (или горизонтов). Последовательность этих горизонтов называется почвенным профилем.

Верхний (или пахотный) слой почвы содержит корни растений, грибы, микроорганизмы, множество различных почвенных насекомых и животный В этом горизонте происходит основной круговорот органический веществ. Весь неиспользованный органический материал из различных трофических уровней вновь утилизируется и распадается здесь сначала до гумуса, а в конечном итоге — до неорганических соединений.

Гумус состоит из лигнина, клетчатки, протеиновых комплексов и других органических соединений. Гуминовые кислоты, которые входят в состав гумуса, представляют собой высокомолекулярные соединения, образовавшиеся из продуктов распада лигнина, клетчатки, белков, жиров и углеводов. Гумус способствует сохранению воды в почве и поддерживает ее в рыхлом состоянии.

Подпочва, расположенная под верхним слоем почвы, содержит органические соединения, которые образовались в результате разложения органических веществ.

Слой почвы (материнская порода), на основе которой образовалась почва, состоит в основном из глины, песка, извести, ила, включающих соли кальция, алюминия и другие макро- и микроэлементы.

Считается, что тип почвы, образующийся в конкретном регионе, зависит от климата данной территории, хотя растения, животные и материнская порода вносят свой вклад в формирование почвы. Процесс образования почвы идет очень медленно, занимая в зонах умеренного климата тысячи лет.

Типы почв различаются определенными комбинациями почвенных горизонтов. В зависимости от соотношения песка и глины все почвы делятся на песчаные, супесчаные, глинистые и суглинистые. На территории России встречаются более 90 видов почв, из них наиболее часто — тундровые, дерново-подзолистые, серые лесные, чернозем, каштановые, сероземы, красноземы.

Структура почвы зависит от взаиморасположения твердых минеральных и органических компонентов и степени заполнения пор в ней воздухом и водой. Выделяют следующие структурные типы почв: сыпучая, связная (агрегатная), трещиноватая, комковатая.

Почва оказывает огромное влияние на свойства и состав подземных вод и воды открытых водоемов. Она всегда содержит то или иное количество влаги, поступившей с атмосферными осадками или поднявшейся по капиллярам из нижележащих слоев земли, а также образовавшейся в результате поглощения паров воды из атмосферного воздуха. Вода необходима для существования живых организмов и роста растений. Гигиеническое значение почвенной воды велико и разнообразно. Она служит универсальным растворителем органических и минеральных соединений, транспортом для доставки химических веществ растениям. Почвенная влага существенно влияет на тепловые свойства почвы, увеличивая ее теплоемкость и теплопроводность. Из почвенных вод образуются грунтовые воды. Химический и бактериальный состав питьевой воды во многом определяется составом и свойствами почвы.

Количество почвенного воздуха определяется свойствами и характером почв. Почвенный воздух постоянно обменивается с атмосферным. Даже в чистых почвах он всегда содержит повышенное по сравнению с атмосферным воздухом количество углекислого газа (до 8 %), содержание кислорода в нем снижается до 14 %. При ограниченном доступе воздуха в толще отбросов развиваются гнилостные процессы с выделением зловонных газов и паров (сероводорода, аммиака, фтороводорода, индола, скатола, метил-меркаптана), способных в соответствующих концентрациях токсически воздействовать на организм человека. Гигиеническое значение почвенного воздуха определяется его составом и условиями контакта с ним человека. Известны случаи отравления почвенным воздухом, например при рытье колодцев, глубоких котлованов, прокладке подземных сооружений. Почвенный воздух существенно влияет на организм человека в зонах отдыха, населенных местах, жилых зонах.

Почвенные вода и воздух определяют пористость, воздухо- и водопроницаемость, влагоемкость, капиллярность, тепловой режим почвы.

Под пористостью почвы следует понимать суммарный объем пор в единице объема почвы, выраженный в процентах. Чем выше пористость, тем ниже фильтрационная способность почвы. Так, пористость песчаной почвы составляет 40 %, торфяной — 82 %. При пористости 50 — 65 % в почве создаются оптимальные условия для самоочищения от биологических и химических загрязнителей. При более высокой пористости процесс самоочищения почвы самозамедляется. Почва такого типа считается неудовлетворительной.

Под воздухопроницаемостью понимают способность почвы пропускать воздух. Это свойство почвы определяется прежде всего размером ее пор. Воздухопроницаемость увеличивается с ростом барометрического давления и уменьшается с увеличением толщины слоя и влажности почвы. Высокая проницаемость почвы для воздуха способствует обогащению ее кислородом, что имеет большое гигиеническое значение, так как ускоряет биохимические процессы окисления органических веществ.

Под водопроницаемостью (или фильтрационной способностью) понимают способность почвы впитывать и пропускать воду, поступающую с поверхности. Это свойство почвы имеет решающее значение для образования почвенных вод и накопления их запасов в недрах Земли и соответственно для снабжения населения водой из подземных источников.

Под влагоемкостъю почвы понимают количество влаги, которое почва способна удерживать сорбционными и капиллярными силами. Влагоемкость тем больше, чем меньше поры почвы и чем больше их суммарный объем. Гигиеническое значение этого свойства почвы связано с тем, что большая влагоемкость создает предпосылки для сырости почвы и находящихся на ней зданий, уменьшает проницаемость почвы для воздуха и воды и мешает очищению сточных вод. Такие почвы являются нездоровыми, сырыми и холодными.

Под капиллярностью почвы понимают ее способность поднимать по капиллярам воду из нижних горизонтов в верхние. Чем менее зерниста почва, т.е. чем более она мелкопористая, тем больше ее капиллярность, тем выше поднимается по ней вода. Большая капиллярность почвы может быть причиной сырости зданий.

Крупные зернистые почвы, как правило, обладают хорошей воздухо- и водопроницаемостью, мелкозернистые — значительной водоемкостью, высокой гигроскопичностью и капиллярностью. В гигиеническом отношении для жилищного и коммунального строительства следует выбирать участки с крупнозернистой почвой.

От температуры почвы в значительной степени зависят температура приземного слоя атмосферы, тепловой режим помещений подвалов и первых этажей зданий. На глубине 1 м почва не имеет температурных суточных колебаний. На глубине 8 м почва сохраняет наиболее низкую температуру в мае и наиболее высокую в декабре. Это имеет значение для хранения пищевых продуктов в подвальных помещениях, где летом прохладнее, а зимой теплее, чем на поверхности. Температура почвы существенно влияет на жизнедеятельность почвенных организмов и процессы самоочищения. Быстрее нагреваются каменистые и сухие почвы со склоном, обращенным на юг и юго-восток.

На почву прямое и косвенное воздействие оказывают почвенные организмы. Среди них есть лучистые грибы (актиномицеты), водоросли, бактерии, вирусы, которые образуют почвенную флору. Кроме того, в почве обитают одноклеточные организмы, простейшие, нематоды, клещи, многохвостки, пауки, улитки, жуки, личинки и куколки мух, дождевые черви, позвоночные животные, представляющие почвенную фауну. Количество организмов подвержено существенным колебаниям, что обусловлено составом и химическими свойствами почвы, температурным режимом, солнечной радиацией, аэрацией, механической обработкой почвы и др.

Климат и здоровье

Природные экологические факторы — погода и климат — постоянно и разнообразно влияют на жизнь отдельного человека и всего человечества.

Погода — состояние атмосферы в данном месте в определенный момент или за ограниченный промежуток времени (сутки, месяц).

Климат — многолетний режим погоды, одна из основных географических характеристик той или иной местности. Климат в данной местности складывается в результате многообразного влияния климатообразующих факторов (географическая долгота и широта, состояние циркуляции атмосферы, солнечная радиация, рельеф местности и характер подстилающей поверхности).

Особое значение имеет изучение воздействия климата и погоды на организм человека, особенно больного, с целью максимального использования их благотворного влияния и предупреждения или уменьшения негативного воздействия. В последние десятилетия XX в. сформировались специальные отрасли науки: медицинская география, биоклиматология, биометеорология, гелиобиология, курортология и др. Они эффективно способствуют профилактике и лечению сердечно-сосудистых, нервных, инфекционных и других заболеваний.

Метеорологические и геофизические элементы погоды, их гигиеническое значение. К метеорологическим элементам, характеризующим погоду, относятся температура, влажность и атмосферное давление воздуха, ветер, облачность и осадки, дальность видимости, туманы, грозы, продолжительность светлого времени суток, температура и состояние почвы, высота и состояние снежного покрова.

Изменения погоды связаны с колебанием атмосферного давления воздуха у поверхности Земли. Антициклоны — области повышенного давления — большей частью приносят с собой ясную погоду. Антициклоны предшествуют каждой серии циклонов — области пониженного давления. В течение года меняются также характеристики атмосферного электричества. В северных районах отмечаются частые изменения геомагнитного поля, такие как магнитные возмущения, бури и грозы, которые возникают в связи с усиленным притоком электрических заряженных частиц с поверхности Солнца. Максимальное количество магнитных бурь наблюдается во время интенсивной солнечной активности, в так называемые периоды «неспокойного солнца».

Наши рекомендации