Важнейшие абиотические факторы и адаптация к ним организмов. Свет. Температура. Влажность
Абиотические факторы - это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На рис. 5 (см. приложение) приведена классификация абиотических факторов. Начнем рассмотрение с климатических факторов внешней среды.
Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение. Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов (эвритермных и стенотермных) эти интервалы различны, для большинства из них зона оптимальных температур, при которых жизненные функции осуществляются наиболее активно и эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300 С : от -200 до +100 С. Но большинство видов и большая часть активности приурочены к еще более узкому диапазону температур. Определенные организмы, особенно в стадии покоя, могут существовать по крайней мере некоторое время, при очень низких температурах. Отдельные виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88 С, для сине-зеленых водорослей - 80 С, а для самых устойчивых рыб и насекомых - около 50 С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние, хотя многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно.
У водных животных диапазон толерантности к температуре обычно более узок по сравнению с наземными животными, так как диапазон колебаний температуры в воде меньше, чем на суше.
Таким образом, температура является важным и очень часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных.
Количество осадков и влажность - основные величины, измеряемые при изучении этого фактора. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается "дождевая тень", способствующая формированию пустыни. Двигаясь в глубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Нами в Юго-Западной Африке. Распределение осадков по временам года - крайне важный лимитирующий фактор для организмов.
Влажность - параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в единице объема воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности - это отношение пара, содержащегося в воздухе, к насыщающему пару при данных температуре и давлении. Так как в природе существуют суточный ритм влажности - повышение ночью и снижение днем, и колебание ее по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Доступный живым организмам запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем от поступления ее с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов.
Излучение Солнца представляет собой электромагнитные волны различной длины. Оно совершенно необходимо живой природе, так как является основным внешним источником энергии. Надо иметь в виду то, что спектр электромагнитного излучения Солнца весьма широк и его частотные диапазоны различным образом воздействуют на живое вещество.
Для живого вещества важны качественные признаки света - длина волны, интенсивность и продолжительность воздействия.
Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса.
Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки.
У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК.
Газовый состав атмосферы также является важным климатическим фактором. Примерно 3-3,5 млрд лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный ки-слород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Из-за отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя.
Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.
Атмосферное давление, по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.
Для абиотических условий справедливы все рассмотренные законы воздействия экологических факторов на живые организмы. Знание этих законов позволяет ответить на вопрос: почему в разных регионах планеты сформировались разные экосистемы? Основная причина - своеобразие абиотических условий каждого региона.
5.
Определение популяции
Виды организмов входят в биоценоз не отдельными особями, а популяциями или их частями.
Популяция – это часть вида (состоит из особей одного вида), занимающая относительно однородное пространство и способная к саморегулированию и поддержанию определенной численности. Каждый вид в пределах занимаемой территории распадается на популяции.
Если рассматривать воздействие факторов среды обитания на отдельно взятый организм, то при определенном уровне фактора (например, температуры) исследуемая особь либо выживет, либо погибнет. Картина меняется при изучении воздействия того же фактора на группу организмов одного вида. Одни особи погибнут или снизят жизненную активность при одной конкретной температуре, другие – при более низкой, третьи – при более высокой.
Поэтому можно дать еще одно определение популяции: все живые организмы, для того чтобы выжить и дать потомство, должны в условиях динамичных режимов экологических факторов существовать в виде группировок, или популяций, т.е. совокупности совместно обитающих особей, обладающих сходной наследственностью.
Важнейшим признаком популяции является занимаемая ею общая территория. Но в пределах популяции могут быть более или менее изолированные по разным причинам группировки. Поэтому дать исчерпывающее определение популяции затруднительно из-за размытости границ между отдельными группами особей.
Каждый вид состоит из одной или нескольких популяций, и популяция, таким образом, - это форма существования вида, его наименьшая эволюционирующая единица.
2. Критические значения численности популяции
Для популяций различных видов существуют допустимые пределы снижения численности особей, за которыми существование популяции становится невозможным. Точных данных о критических значениях численности популяций в литературе нет. Приводимые значения разноречивы.
Остается, однако, несомненным факт, что чем мельче особи, тем выше критические значения их численности. Для микроорганизмов это миллионы особей, для насекомых – десятки и сотни тысяч, а для крупных млекопитающих – несколько десятков.
Численность не должна уменьшаться ниже пределов, за которыми резко снижается вероятность встречи половых партнеров. Критическая численность также зависит от других факторов. Например, для некоторых организмов специфичен групповой образ жизни (колонии, стаи, стада). Группы внутри популяции относительно обособлены. Могут иметь место такие случаи, когда численность популяции в целом еще достаточно велика, а численность отдельных групп уменьшена ниже критических пределов. Например, колония (группа) перуанского баклана должна иметь численность не менее 10 тыс. особей, а стадо северных оленей – 300 – 400 голов.
3. Возрастная структура популяций
Для понимания механизмов функционирования и решения вопросов использования популяций большое значение имеют сведения об их структуре.
Различают половую, возрастную, территориальную и другие виды структуры. В теоретическом и прикладном планах наиболее важны данные о возрастной структуре - соотношение особей (часто объединенных в группы) различных возрастов.
У животных выделяют следующие возрастные группы:
ювенильная группа (детская)
сенильная группа (старческая, не участвующая в воспроизводстве)
взрослая группа (особи, осуществляющие репродукцию)
Обычно наибольшей жизнеспособностью отличаются нормальные популяции, в которых все возраста представлены относительно равномерно. В регрессивной (вымирающей) популяции преобладают старческие особи, что свидетельствует о наличии отрицательных факторов, нарушающих воспроизводительные функции. Требуются срочные меры по выявлению и устранению причин такого состояния. Внедряющиеся (инвазионные) популяции представлены в основном молодыми особями. Жизненность их обычно не вызывает опасений, но велика вероятность вспышек чрезмерно высокой численности особей, поскольку в таких популяциях не сформировались трофические и другие связи. Особенно опасно, если это популяция видов, ранее отсутствовавших на данной территории. В таком случае популяции обычно находят и занимают свободную экологическую нишу и реализуют свой потенциал размножения, интенсивно увеличивая численность.
Если популяция находится в нормальном или близком к нормальному состоянии, человек может изымать из нее количество особей (у животных) или биомассу (у растений), которая прирастает за промежуток времени между изъятиями. Изыматься должны прежде всего особи послепродуктивного возраста (окончившие размножение). Если преследуется цель получения определенного продукта, то возраст, пол и другие характеристики популяций корректируются с учетом поставленной задачи.
Эксплуатация популяций растительных сообществ (напр., для получения древесины), обычно приурочивается к периоду возрастного замедления прироста (накопления продукции). Этот период обычно совпадает с максимальным накоплением древесной массы на единице площади.
4. Половая структура популяций
Популяции свойственно также определенное соотношение полов, причем соотношение самцов и самок не равно 1:1. Известны случаи резкого преобладания того или иного пола, чередование поколений с отсутствием самцов.
5. Пространственная структура популяций
Каждая популяция может иметь и сложную пространственную структуру (рис.2), подразделяясь на более или менее крупные иерархические группы - от географической до элементарной (микропопуляции).
6.
Динамика популяций
Динамика популяций – это процессы изменения ее основных биологических показателей (численности, биомассы, структуры) во времени в зависимости от экологических факторов. Жизнь популяции проявляется в ее динамике – одном из наиболее значимых биологических и экологических явлений.
Кривая выживания представляет собой график зависимости от времени числа выживших на данный момент особей для некоторой начальной группы новорожденных. Каждому биологическому виду свойственна своя характерная кривая выживания. При построении графика по оси абсцисс откладывают относительный возраст, а по оси ординат – абсолютное число выживших особей или их процент от исходного числа по формуле:
Типичные примеры представлены на рис. 4.4.
Все животные и растения подвержены старению, которое проявляется в снижении жизненной активности с возрастом после периода зрелости. Непосредственные причины смерти могут быть разными, но в основе их лежит уменьшение сопротивляемости организма к неблагоприятным факторам, например болезням.
Кривая 1 на рис. 4.4 близка к идеальной кривой выживания для популяции, в которой старение – главный фактор, влияющий на смертность. Так, в современной развитой стране с высоким уровнем медицинского обслуживания и рациональным питанием большинство людей доживает до старости, но среднюю ожидаемую продолжительность жизни почти невозможно увеличить более чем до 75 лет. Поскольку даже в наиболее высокоразвитых странах детская смертность выше средней, она изображается начальным участком а, а наличие долгожителей – конечным участком б (кривая 1). Кроме того, на кривую выживания влияет фактор «случайной гибели», причины которой с возрастом могут меняться. Например, в Англии наибольшая смертность в результате автомобильных аварий приходится на возраст 20–25 лет.
Закономерность, аналогичная кривой 1, свойственна и однолетним растениям, например злаковым, ибо на поле все растения одного вида стареют одновременно.
Кривая 3 иллюстрирует изменения в популяции, у которой смертность относительно постоянна в течение всей жизни организмов (например, 50 % за определенное время). Причиной смерти преимущественно служит случай, и особи гибнут до начала заметного старения. Кривая, подобная этой, была получена, например, для «популяции» стеклянных (легко бьющихся) стаканов в кафетерии. В природе к таким видам относятся, например, устрицы, дающие огромное потомство, а также растения, размножающиеся благодаря рассеиванию большого числа семян. Большая или меньшая смертность среди молодых особей приводит к изменению крутизны опускания начальной части кривой 3.
К промежуточному типу относят кривые выживания таких видов, для которых смертность мало меняется с возрастом. В природе существует много видов птиц, ящериц, мелких млекопитающих и других организмов, имеющих кривые выживания 2, которые отличаются от прямолинейной диагонали некоторой выпуклостью (вогнутостью) или волнообразностью.
Форма кривой выживания часто меняется при изменении плотности популяции. С увеличением плотности кривая становится более вогнутой, т. е. при увеличении численности организмов их смертность возрастает.
Существуют также внутривидовые различия в кривых выживания. Причины могут быть разные и нередко связаны с полом. Так, женщины живут дольше мужчин, хотя причины этого точно не известны.