Взаимоотношения «паразит – хозяин»
Паразиты – это организмы, которые питаются за счет организма‑хозяина. Это очень разнообразная группа организмов (животные, растения, грибы, бактерии), которую изучает специальная наука – паразитология.
Паразиты не убивают хозяина, а длительное время используют его как пищевой ресурс и убежище, лишь сокращая длительность жизни и плодовитость «организма‑дома». Паразиты близки к хищникам‑пастбищникам, но отличаются тем, что если хищник‑пастбищник использует несколько жертв, то паразит связан с одним организмом‑хозяином (а если с несколькими, то меняет их в ходе жизненного цикла).
Различаются следующие группы паразитов.
Биотрофы и некротрофы. Биотрофы всю жизнь питаются за счет живого хозяина, а некротрофы губят его (или часть его тела, например лист растения) и завершают свою биографию как рассматриваемые далее детритофаги.
Микропаразиты и макропаразиты. Различаются по размерам. К микропаразитам относятся вирусы, бактерии, микроскопические грибы и простейшие, к макропаразитам – все прочие.
Истинные паразиты и паразитоиды. Истинные паразиты всю свою жизнь питаются за счет организма‑хозяина (или нескольких хозяев, если в течение жизненного цикла переселяются из организма одного вида в другой). Паразитоиды (как правило, насекомые) на определенных стадиях жизненного цикла ведут свободный образ жизни (питаются как фитофаги или зоофаги). После этого они откладывают яйца в тело организма‑хозяина, в котором паразитируют личинки. Паразитоиды представляют переход к хищникам. Насекомые‑паразитоиды используются для биологического метода контроля насекомых‑вредителей в сельском хозяйстве (трихограмма, теленомус‑наездник и др.).
Эндотрофные и эктотрофные паразиты. Эндотрофные паразиты живут внутри организма‑хозяина (глисты в кишечнике позвоночных, стеблевые нематоды в стеблях хлебных злаков), а эктотрофные – на поверхности организма‑хозяина (блохи, вши, клещи и др.). Особый случай эктотрофного паразитизма – образ жизни карликовых самцов глубоководных удильщиков, которые внедряются острыми зубами в тело самки, после чего тела хозяина и паразита сливаются воедино (объединяются даже кровеносные системы). Тело самки в 13 раз больше тела самца. Экологический смысл этой адаптации заключается в повышении вероятности оплодотворения. Удильщики живут в полной темноте, и иные варианты поиска «спутника жизни» реализовать крайне сложно.
Суперпаразиты – «паразиты паразитов». Существуют суперпаразиты от первого до четвертого порядка (их можно представить в виде матрешки), верхний уровень представлен бактериями или вирусами. Эту матрешку очень точно описал Дж. Свифт:
Под микроскопом он открыл, что на блохе
Живет блоху кусающая блошка;
На блошке той – блошинка‑крошка,
В блошинку же вонзает зуб сердито
Блошиночка… и так ad infinitum.
В этом случае из паразитов формируется пищевая цепь.
Различаются группы паразитов и по сложности жизненного цикла. Одни виды паразитов передаются при непосредственном контакте особей хозяина (например вирусы и бактерии, вызывающие болезни человека). Другие паразиты перед заражением основного хозяина, в теле которого они образуют потомство, проходят через один или несколько видов промежуточных хозяев (например широкий лентец – паразит человека, но в течение жизненного цикла он проходит через стадии жизни в рачках‑циклопах и рыбах).
И, наконец, кроме паразитов, существуют еще и полупаразиты. Значительное число видов растений (в средней полосе в первую очередь из семейства норичниковых) сочетает автотрофное питание и паразитирование на корнях растений‑хозяев. При этом если каждый вид растений‑паразитов (из семейств заразиховых, повиликовых и др.) имеет своего «персонального» хозяина, то число видов‑хозяев для одного вида полупаразита исчисляется десятками и сотнями. В этом случае нет необходимости в тонком подстраивании метаболизма хозяина и полупаразита, как при абсолютном паразитизме, полупаразит получает от растения‑хозяина только неспецифические элементы питания.
Среди полупаразитов есть виды, наносящие вред хозяйству человека. Например погремки (Rhinanthus) при доминировании в луговых сообществах становятся основными продуцентами органического вещества. В этом случае за счет потери энергии при переходе с одного трофического уровня на другой (см. 10.4) биологическая продукция травостоя снижается в 2‑3 раза. Причем погремок не поедается сельскохозяйственными животными ни на пастбище, ни в сене.
В естественных экосистемах взаимоотношения «паразит – хозяин» являются одним из важных факторов поддержания экологического равновесия. Особенно велика их роль при контроле плотности популяций крупных животных, у которых нет естественных врагов‑хищников (слон, бегемот, крокодил, лев и др.). При отсутствии паразитов их отношения с жертвами могли бы быть нарушены.
В процессе длительной коэволюции (взаимоприспособления) паразитов и хозяев вырабатываются специальные механизмы, которые позволяют им устойчиво сосуществовать.
Защитные реакции хозяев могут быть следующими:
– иммунный ответ организма, т.е. возникновение биохимических реакций, которые сдерживают массовое развитие паразитов;
– сбрасывание зараженных частей (это особенно характерно для растений‑хозяев, которые сбрасывают сильно зараженные листья). В этом случае паразиты продолжают жить уже как детритофаги;
– выработка устойчивости к влиянию паразитов за счет быстрого роста здоровых тканей взамен пораженных (это имеет место при паразитировании тли);
– изоляция органов поражения как «зеленых островов» (формирование галлов у дуба, орешника и других растений после того, как насекомое‑паразитоид отложит в ткани листа яйцо);
– уменьшение плотности популяций хозяев, что снижает вероятность распространения паразита и заражения им. Зараженные животные менее подвижны и становятся более легкой добычей хищников, которые таким образом снижают долю зараженных особей в популяции;
– формирование гетерогенных популяций хозяев, в составе которых есть экотипы, устойчивые к паразитам. Эти экотипы являются основой адаптивной селекции на повышение устойчивости культурных растений к грибковым заболеваниям.
В естественных экосистемах формирование экологического равновесия между популяциями паразитов и их хозяев – нормальное явление. При этом в отличие от отношений «фитофаг – растение» или «хищник – жертва» оно возможно без третьего участника. В силу того, что паразиты связаны с ограниченным кругом хозяев, эта связь математически описывается проще, чем связь между хищниками и их жертвами. Во многих случаях проявляется модель Лотки–Вольтерры: плотность популяций обоих видов изменяется циклически, но пики плотности паразитов запаздывают по отношению к пикам плотности хозяев.
Ситуация изменяется в антропогенных экосистемах, особенно в сельскохозяйственных, где заражение скота паразитами может привести к гибели многих животных. Представляют опасность взаимоотношения паразитов и человека, который может заболевать гельминтозами, вызываемыми разными видами глистов, лямблиозом (при заражении простейшим – лямблией), болезнями бактериальной и вирусной природы.
Катастрофическими бывают последствия заноса паразитов в новые районы, где у их потенциальных хозяев отсутствуют механизмы защиты от паразитов. В ХХ в. произошли ботанические катастрофы в Америке (гибель зубчатого каштана Castanea dentata от занесенного туда из Китая паразитического гриба Endothia parasitica, вызывающего «рак каштана») и Европе, где от «голландской болезни» почти полностью исчез вяз. Болезнь вызывает гриб Ophiostoma ulmi, который переносится жуком‑короедом.
К еще более серьезным последствиям привело распространение вируса «коровьей чумы» в саваннах Африки (McNaughton, 1992). Под влиянием этого вируса, который первоначально вызвал болезни у домашнего скота, а затем поразил многие виды диких крупных копытных животных, резко снизилась нагрузка фитофагов на растительность саванны, и в первую очередь на ее древесно‑кустарниковый компонент и на его отношения с травяным покровом саванны. Кустарники и деревья стали бурно разрастаться, подавляя травы, что увеличило количество пожаров, которые при таком сомкнутом древесном пологе стали более частыми. После пожаров деревья отрастали плохо и замещались кустарниками, корневища которых позволяли им сохраняться во время пожара. Только в 70‑е годы, когда удалось снять влияние на экосистемы вируса «коровьей чумы», вылечив от болезни домашний скот, поставлявший паразита популяциям диких животных через выделение слюны на пастбищах, где их выпас чередовался, процесс был остановлен. Восстановилась плотность популяций животных, питающихся ветками, и соответственно восстанавился баланс между древесно‑кустарниковым и травяным компонентами экосистемы саванны, которая приобрела первозданный облик.
Есть примеры более сложных взаимоотношений «паразит – хозяин» с посредником. Так гетеротрофное растение‑паразит подъельник паразитирует на грибах, разлагающих мертвое органическое вещество, но, кроме того, по гифам микоризного гриба, как по шлангу, выкачивает питательные элементы из корней ели.
Контрольные вопросы
1. Чем паразиты отличаются от хищников?
2. Расскажите о разнообразии паразитов.
3. Какие защитные реакции против паразитов вырабатываются у хозяев?
4. Расскажите о нарушении экологического равновесия в паре «паразит – хозяин» при вмешательстве человека.
Мутуализм
Мутуализм – это форма взаимоотношений организмов, при которых партнеры получают пользу.
Отношениями мутуализма связаны организмы, не конкурирующие за ресурсы. Мутуализм включает разнообразные формы сотрудничества – от облигатного (симметричного или асимметричного), при нарушении которого гибнут оба или один сотрудничающий партнер, до факультативного, которое помогает выживать партнерам, но не является для них обязательным (так называемаяпротокооперация). Рассмотрим основные варианты мутуализма.
Растения и микоризные грибы. Такие взаимоотношения с грибами (микотрофия) свойственны большинству видов наземных сосудистых растений (цветковых, голосеменных, папоротников, хвощей, плаунов), что во многом облегчило заселение растениями суши (Заварзин, 2000). Микоризные грибы могут оплетать корень растения и проникать в ткани корня, не нанося ему при этом существенного ущерба (эндотрофные и эктотрофные микоризы).
Грибы, не способные к фотосинтезу, получают из корней растений органические вещества, а у растений за счет разветвленных грибных нитей в сотни и тысячи раз увеличивается всасывающая поверхность корней. Кроме того, некоторые микоризные грибы не просто пассивно всасывают элементы питания из почвенного раствора, но и одновременно выступают в роли редуцентов и разрушают сложные вещества до более простых. Кроме того, микоризные грибы, выделяя антибиотики, защищают корни растений от патогенов.
Микоризные грибы – «дорогое удовольствие» для растений, так как использование их в качестве посредников для обеспечения элементами питания и водой сопряжено со значительными затратами продуктов фотосинтеза (1/3 или даже 1/2 валовой первичной продукции). По этой причине при улучшении условий минерального питания, например при удобрении лугов, даже типичные микотрофные растения отказываются от микориз и переходят на «самообслуживание». Не тратятся на содержание микориз виды‑нитрофилы (распространенные на почвах с высоким содержанием нитратного азота) из семейств маревых, крестоцветных и некоторых других, которые селятся на первых стадиях восстановления экосистем после нарушений (см. 12.6), когда за счет минерализации органического вещества в почве резко возрастает количество нитратов. При этом микоризы, которыми обладают виды следующих стадий сукцессии, выделяют вещества, подавляющие «самостоятельные» растения. Это ускоряет процесс вытеснения нитрофилов.
Микоризы нет у водных растений, и сравнительно редко она встречается у растений экстремальных условий – пустынь, горных и арктических тундр. Как подчеркивает Т.А. Работнов (1992), большинство микотрофов – это мезофиты умеренно богатых почв.
Микоризы у травянистых растений, как правило, не видоспецифичны (т.е. один вид грибов может формировать микоризу у разных растений), а у древесных – видоспецифичны. Таким образом, плодовые тела подберезовика, подосиновика, масленка или рыжика образуются за счет продукции фотосинтеза соответствующих видов деревьев.
Поскольку микоризные грибы оплетают корни нескольких рядом произрастающих растений, по ним возможен горизонтальный перенос элементов питания от одного растения к другому по «гифопроводам». А.М. Гиляров (2003) рассматривает это как «экзаптации на уровне сообществ», т.е. как побочный эффект адаптации микоризного гриба к нескольким видам растений. Данных о количестве веществ, перекачиваемых по микоризам из одного растения в другое, мало. Можно полагать, что оно невелико, тем не менее смягчает отношения конкуренции и повышает общую устойчивость экосистем.
Растения и микроорганизмы‑азотфиксаторы. Возможны две формы такого мутуализма – облигатный мутуализм и протокооперация. В первом случае азотфиксирующие микроорганизмы живут в корнях растений (бобовых, облепихи, ольхи и некоторых других), вызывая образование клубеньков. Процесс связывания атмосферного азота облигатными азотфиксаторами называется симбиотической азотфиксацией. При протокооперации азотфиксирующие микроорганизмы населяют примыкающую к корням часть почвы (ризосферу) и усваивают органические вещества, которые, как в проточном культиваторе, постоянно выделяются корнями. Такая азотфиксация называется ассоциативной. В целом ассоциативная азотфиксация преобладает в естественных экосистемах, симбиотическая – в агроэкосистемах.
Симбиотические микроорганизмы могут жить и в листьях, пример – водный папоротник азолла, распространенный в тропическом поясе. Связанная с азоллой цианобактерия анабена способна за год фиксировать до 1000 кг/га азота (что является бесспорным рекордом, достойным книги Гиннеса). Для сравнения посев клевера в средней полосе способен за год фиксировать до 200 кг/га азота, а люцерны в жарких районах с удлиненным полевым периодом и при поливе – до 700 кг/га (к слову, оптимальная доза внесения азотных удобрений в разных условиях и для разных культур колеблется в пределах 50‑200 кг/га; в настоящее время в России в почву в среднем вносится 10 кг/га азотных удобрений в действующем веществе).
Обеспечение новых («мертвых») субстратов азотом является необходимым условием для их зарастания. В теплом климате азот в субстрате накапливается в результате симбиотической азотфиксации: пионерами заселения лавовых потоков, отложений речного аллювия, горных осыпей являются бобовые растения (особенно часто из рода люпин). В более прохладном климате азот поставляется в результате ассоциативной азотфиксации: новые субстраты зарастают злаками и осоками. В самых суровых условиях Севера пионерами оказываются цианобактерии, которые обладают уникальной способностью и к фотосинтезу, и к азотфиксации.
Мутуалистические взаимоотношения с азотфиксаторами, также как и содержание микориз, обходятся растениям очень дорого: на них затрачивается значительное количество продуктов фотосинтеза (около 1/3). Большими затратами органического вещества на симбиотическую азотфиксацию объясняются более низкие урожаи зернобобовых культур по сравнению со злаками.
Тем не менее на биологическую азотфиксацию экологи возлагают большие надежды, она должна во многом заменить техногенную азотфиксацию промышленных предприятий, при которой на производство минеральных азотных удобрений затрачивается очень много энергии. Кроме того, экологически грязным является не только само производство удобрений, но и их использование: при внесении азотных удобрений на поля до 50% их вымывается в окружающую среду, вызывая ее загрязнение (в первую очередь эвтрофикацию водных экосистем, см. 12.7).
Растения и насекомые‑опылители. Насекомые, переносящие пыльцу, питаются нектаром или пыльцой. Отмечены случаи участия насекомых в опылении даже таких типично ветроопыляемых растений, как злаки. Насекомые‑опылители переносят пыльцу с одного цветка на другой на большие расстояния, чем ветер. Если пыльца деревьев за время, пока рыльцевая поверхность сохраняет способность ее воспринимать, может быть перенесена ветром не более чем на 70 м (у трав – менее 10 м), то за это время шмели переносят пыльцу на расстояние до 3 км. Радиус переноса пыльцы пчелами обычно ограничен 1 км.
Существует два основных направления развития мутуализма растений и насекомых: узкая и широкая специализация (т.е. в направлении облигатного мутуализма и протокооперации). При узкой специализации эволюция ведет к ограничению числа опылителей: происходит усложнение строения цветка (как у бобовых или губоцветных) таким образом, что нектар становится доступным только для насекомых с определенным типом строения (в первую очередь ротового аппарата). Высшее достижение этого варианта эволюции – взаимоотношения опылителей и некоторых представителей орхидных, которые привлекают самцов насекомых‑опылителей, имитируя облик и половые феромоны самок.
При широкой специализации спектр опылителей возрастает. Широкий спектр опылителей имеют представители семейства сложноцветных. Этим объясняется их высокая устойчивость в антропогенно нарушенных экосистемах, в которых обеднен состав видов опылителей. По этой причине в современном нарушаемом человеком мире обязательный мутуализм растений и насекомых менее выгоден для обоих партнеров, чем протокооперация.
Эффективность протокооперации возрастает по причине неодновременного цветения разных видов, опыляемых одним видом насекомых. Более того, как правило, насекомые посещают цветки именно в апогей их цветения, когда продукция нектара максимальна. (Пчеловоды прекрасно знают о том, что их подопечные сначала посещают один вид растения и только после того, как его цветки минуют пик нектарообразования, переключаются на сбор нектара с цветков другого вида.)
В тропиках опылителями некоторых растений являются птицы и летучие мыши.
Растения и животные, распространяющие их семена. Распространение плодов (и семян) растений с помощью животных (зоохория) широко представлено в природе. Агентами‑распространителями являются птицы, поедающие сочные плоды, медведи, копытные, насекомые. При прохождении через пищеварительный тракт животных семена зоохорных растений не только не перевариваются, но даже повышают всхожесть.
Кроме плотных покровов, защищающих семена от переваривания, существуют другие приспособления для зоохории. Так на семенах растений (многих губоцветных, лилейных, маковых, молочайных, лютиковых, сложноцветных), распространяемых муравьями имеются специальные придатки, богатые маслом, которые привлекают муравьев и используются ими в пищу Сухие зоохорные плоды снабжены различными крючочками и щетинками для прикрепления к шерстному покрову животных, например у репейничка, череды, чернокорня, лопуха.
С помощью животных распространяются споры некоторых видов грибов и мхов.
Водоросли и грибы в лишайнике. В этом случае мутуализм столь обязателен и функции сотрудничающих организмов столь прилажены друг к другу, что по‑существу возникает новый «организм второго порядка». Водоросль обеспечивает гриб органическими веществами, гриб водоросль – водой и минеральными элементами.
Этот вариант обязательного мутуализма представлен весьма широко: имеются сотни видов лишайников. Лишайники первыми заселяют поверхность скал и широко распространены на Севере в условиях крайней ограниченности ресурсов тепла и элементов минерального питания.
Долгие годы в литературе ведется дискуссия о симметричности отношений гриба и водоросли в лишайнике. В последнее время все чаще эти отношения рассматриваются как асимметричные: большую «выгоду» от симбиоза получает гриб («водоросль – это царевна, плененная жестоким драконом»).
Млекопитающие и микроорганизмы, населяющие их пищеварительный тракт. Большинство животных, включая человека, но особенно травоядные, сами не в состоянии переваривать пищу, так как не имеют ферментов, разрушающих целлюлозу, и эту роль играют микроорганизмы – бактерии и некоторые простейшие, которые живут в их желудочно‑кишечном тракте.
В кишечном тракте гладких китов среди 1000 видов бактерий были найдены даже те, которые могут разрушать органические вещества, присутствующие в нефтепродуктах. Возможно, что наличием этих симбионтов объясняется сравнительно высокая устойчивость этого вида китов к нефтяному загрязнению океана.
Хемоавтотрофные бактерии и низшие животные. Червеобразные животные‑вестиментиферы (тип погонофоры) в стадии личинки являются типичными гетеротрофами со ртом, пищеварительным каналом и анусом. Однако после того как они заглатывают серобактерии, происходит редукция органов пищеварения, клетки животного заполняются серобактериями, и вестиментиферы становятся «симбиотическими автотрофами». В результате мутуализма бактерии получают сероводород, а животное – органическое вещество.
Содержание сероводорода в среде, где обитают вестиментиферы, таково, что может погибнуть любой другой организм. Их спасает особый тип гемоглобина, который связывает не только кислород, но и серу. Мутуализм позволяет вестиментиферам очень быстро расти и достигать длины 2,5 м.
В.В.Малахов (2001) считает, что мутуализм вестиментифер и бактерий возник в результате развития пищевых отношений типа «жертва – хищник». В гидротермальных оазисах океана и сейчас существуют свободноживущие серобактерии, которые формируют «маты», служащие пищей для многих животных. Начав с питания такими свободноживущими бактериями, вестиментиферы со временем вступили с ними в отношения мутуализма.
Подобным образом питаются и другие погонофоры, связанные отношениями мутуализма уже не с серобактериями, а с метанобактериями. Бактерии используют метан, образующийся в нефтяных пластах и поступающий в океан по трещинам в плитах литосферы. Это позволяет использовать погонофор в качестве биологических индикаторов месторождений нефти.
Кишечнополостные и водоросли. Водоросли поселяются в теле кораллов, заключенных в известковый скелет, и снабжают животное органическим веществом. Животное поставляет водорослям питательные элементы и дает убежище. В отличие от погонофор кораллы являются гетеротрофами, которые питаются зоопланктоном. Водоросли лишь помогают наиболее эффективно использовать вещества, полученные при гетеротрофном питании. Этим мутуализмом объясняется быстрый рост коралловых рифов.
Человек и сельскохозяйственные животные и культурные растения. Этот вариант мутуализма является протокооперацией, тем не менее ни человек при современной плотности населения на планете не может обойтись без сельскохозяйственных животных и растений, ни корова, пшеница или рис не могут выжить без человека. Причиной мутуализма является искусственный отбор, в результате которого из «эгоистических» побуждений человек усиливал у растений и животных эксплерентность и снижал патиентность и виолентность, что лишило эти организмы способности жить без его опеки. Особенно активно это направление селекции развивалось в 60–70‑е гг. ХХ в., когда в странах субтропического и тропического поясов произошла Зеленая революция (см. 11.5).
Широко распространен мутуализм водорослей и простейших в океанических экосистемах. Некоторые простейшие после поедания водорослей используют их хлоропласты, причем они продолжают работать в теле простейшего до тех пор, пока не износятся, после чего перевариваются.
Как протокооперация (хотя и весьма слабая) могут рассматриваться взаимоотношения между бобовыми и злаками в сеяных травостоях: бобовые за счет связи с симбиотическими азотфиксирующими бактериями улучшают условия обеспечения злаков азотом, а вертикально ориентированные листья злаков, пронзающие густой травостой бобовых, понижают уровень конкуренции за свет.
Известно множество других «экзотических» вариантов мутуализма:
– разведение грибов муравьями и жуками;
– отношения африканской птицы медоуказчика и капского медоеда (птица находит пчелиное гнездо, а медоед вскрывает его);
– отношения чистильщиков (птиц, рыб) и их «клиентов»:
– отношения муравьев и акаций (муравьи охраняют акацию, соком которой питаются, от других фитофагов) и мн. др.
Контрольные вопросы
1. Какую роль в жизни растений играют микоризные грибы?
2. Какое количество продуктов фотосинтеза затрачивает растение на «содержание» микоризного гриба?
3. В каких случаях растения могут обходиться без микоризы?
4. Расскажите о симбиотической и ассоциативной азотфиксации.
5. В каких экосистемах преобладает симбиотическая азотфиксация?
6. Какую роль играет биологическая азотфиксация в экологизации сельского хозяйства?
7. Дайте оценку роли мутуализма и протокооперации в отношениях растений с насекомыми опылителями.
8. Расскажите о роли зоохории в расселении растений.
9. Какую пользу получают гриб и водоросль от соместеного существования в составе лишайника?
10. Расскажите о мутуализме млекопитающих и микроорганизмов, населяющих их пищеварительный тракт.
11. Рассмотрите вестиментиферы как пример мутуализма животных и хемотрофных бактерий.
12. Какую роль в жизни кораллов играют связанные с ними водоросли?
13. Почему отношения человека и сельскохозяйственных растений и животных рассматриваются как мутуалистические?
Комменсализм и аменсализм
Мутуализм связан плавным переходом с другим вариантом отношений организмов – комменсализмом, при котором сотрудничество выгодно только одному из партнеров. При этом на разных стадиях сотрудничества (или чаще в разных условиях) большую выгоду может получать то один, то другой партнер. Рассмотрим некоторые наиболее характерные случаи комменсализма.
«Растения‑няни» и их подопечные. Береза или ольха могут быть «няней» для ели: «няня» защищает всходы ели от прямых солнечных лучей, так как на открытом месте елочки вырасти не смогут. В таких же отношениях состоят кустарники из семейств губоцветных и сложноцветных с южноамериканскими кактусами. Кактусы для снижения дневного испарения воды фотосинтезируют при закрытых устьицах (они используют углерод кислот, образованных из захваченного устьицами за ночь углекислого газа) и потому не «потеют». Взрослые кактусы имеют большую фитомассу, и им перегрев не страшен, а молодые могут развиваться только в тени засухоустойчивых кустарников, так как на открытом солнечном свете они гибнут. Весьма характерно, что в более благоприятных климатических условиях (например при подъеме в горы, где климат более прохладный) кактусы не нуждаются в «растениях‑нянях».
Эпифиты и деревья. Как комменсализм можно рассматривать отношения эпифитов и деревьев‑хозяев: они выгодны для эпифита, но безразличны для хозяев, так как эпифиты используют лишь отмершие ткани дерева или скопления пыли опавших листьев.
Группа эпифитов достаточно разнообразна и включает лишайники, водоросли, папоротниковидные, цветковые растения. При этом сосудистые эпифиты распространены почти исключительно в теплом тропическом и субтропическом климате. В умеренном климате эпифиты представлены только лишайниками, которые селятся на стволах деревьев, и реже мхами. Отсутствие эпифитов в лесах умеренной полосы связано в первую очередь с их неспособностью переносить холодные периоды года.
Как правило, эпифиты – чистые комменсалы, но есть случаи, когда установлено их отрицательное влияние на дерево‑хозяина. При этом отрицательное влияние оказывает не сам эпифит, а его микоризный гриб, который ведет себя как паразит. Если эпифитов очень много, то они создают дополнительную нагрузку на ветви, что может вызвать их поломку. Таким образом, «безвредность» эпифитов для деревев относительна.
Детритофагия. На те популяции, организмы которых поедаются в мертвом состоянии, детритофаги практически не влияют. Хотя это положение нельзя абсолютизировать: участвуя совместно с редуцентами в процессе минерализации органического вещества, детритофаги способствуют его возврату в окружающую среду и тем самым росту растений и всех организмов, которые связаны с ними в пищевых цепях.
В почве сконцентрировано огромное разнообразие детритофагов: число их видов на 1 м 2 почвы в лесу умеренной полосы может превышать 1000, а общая плотность популяций простейших и нематод – 10 млн, ногохвосток (Collembola) и почвенных клещей (Acari) – 100 тыс. и т.д.
Почвенные детритофаги разделяются на группы микрофауны (в нее входят простейшие, нематоды и коловратки, а также специализированные животные, питающиеся микроорганизмами, то есть, строго говоря, к детритофагам не относящиеся), мезофауны (животные с шириной тела от 100 мкм до 2 мм), макрофауны (ширина тела от 2 до 20 мм) и мегафауны (ширина тела более 20 мм). В последнюю группу входят мокрицы (Isopoda), многоножки (Diplopoda), дождевые черви (Megadrili), улитки и слизни (Mollusca), личинки некоторых мух (Diptera) и жуков (Coleoptera). Ч. Дарвин считал, что только дождевые черви перерабатывают такое количество растительного детрита, что ежегодное поступление в почву их экскрементов достигает 50 т/га. В тропических районах это количество может быть в три раза выше.
Именно благодаря этой армаде детритофагов из мертвого органического вещества (в травяных экосистемах в первую очередь корней растений, в лесных – опада) формируется почва. При этом многие детритофаги одновременно являются и хищниками, так как питаются «бутербродами» из мертвого вещества и содержащихся в нем живых бактерий.
Особая группа детритофагов – копрофаги, питающиеся экскрементами. Большинство копрофагов питается экскрементами травоядных животных, которые усваивают поедаемую растительную массу не более чем на 10%, остальное выделяется или в окружающую среду в непереваренном состоянии (существуют даже варианты детритофагии в сельском хозяйстве при повторном скармливании животным специально подготовленных экскрементов). Фауна копрофагов очень разнообразна, особенно в тропиках (в частности в ее составе есть навозный жук Heliocopris dilloni, имеющий размер до 6 см!).
Копрофаги часто специализированы для «переработки» определенного типа экскрементов, что создало проблемы после появления в Австралии крупного рогатого скота, навоз которого местные копрофаги, привыкшие к «вкусу» помета кенгуру, перерабатывать отказались. Пришлось отправлять в Австралию жуков‑копрофагов из Африки!
Количество копрофагов, питающихся экскрементами хищников, много меньше, так как в этом случае корм переваривается более полно, и потому потенциальная пища детритофагов менее питательна.
Крупные детритофаги, питающиеся трупами животных, называются мусорщиками (это – ворон, коршун, гриф, шакал, росомаха, барсук, песец и др.). К этой же группе относятся некоторые крупные беспозвоночные, например жук‑мертвоед некрофорус, который способен (вдвоем с самкой) закопать труп мыши на глубину до 20 см и там «скормить» его своим личинкам.
Среди детритофагов водных экосистем по способу добывания и переработки пищи различают размельчителей, собирателей, соскребателей, фильтраторов.
В некоторых случаях возможны отношения типа аменсализм – вредные для одного партнера и нейтральные для другого. Аменсализм представлен в природе как крайний вариант асимметричной конкуренции, когда один вид перехватывает ресурсы у другого, но этот другой столь слаб, что практически не может воспрепятствовать этому. Аменсализмом являются отношения между взрослыми деревьями и всходами деревьев или травами напочвенного покрова в лесу, которые делят ресурсы почвенного питания и азота.
В заключение отметим, что взаимоотношения организмов могут меняться не только в зависимости от условий среды (обострение конкуренции при уменьшении ресурсов, кроме того, в разных условиях более сильными конкурентами могут быть разные виды), но и на разных стадиях жизненного цикла. Пример тому – взаимоотношения семги и двустворчатого моллюска жемчужницы. Личинки жемчужницы паразитируют (живут в жабрах семги), но взрослые моллюски живут независимо на дне и, фильтруя воду, улучшают условия для жизни рыбы, очень чувствительной к загрязнению. Кроме того, между скоплениями раковин прячется от хищников молодь семги. Уже описанный положительный «эффект группы» и отношения «растений‑нянь» и их подопечных также со временем сменяется острой конкуренцией: в группе начинается процесс самоизреживания, а подопечные подавляют своих «нянь».
Положительные взаимодействия играют важную роль в организации экосистем, так как уравновешивают антагонизм конкуренции, хищничества и паразитизма.
Контрольные вопросы
1. Какие отношения называются комменсализмом?
2. Расскажите об отношениях «растений‑нянь» и их «подопечных».
3. Какие взаимоотношения складываются между эпифитами и деревьями.
4. Какую роль играет детритофагия в жизни экосистем?
5. Расскажите о детритофагах, населяющих почву.
6. Какую роль играют копрофаги?
7. Какие организмы называются мусорщиками?
8. Приведите примеры аменсализма.