Круговороты веществ в биосфере.
В биосфере условно выделяют элементарные целостные единицы - биогеоценозы - совокупность популяций разных видов, обитающих в определенной местности. Биоценоз объединяет сообщества растительных и животных организмов, населяющих участок биосферы с однородными условиями существования. Взаимные связи внутри биогеоценоза поддерживаются в процессе круговорота веществ. Основное условие поддержания жизни в биосфере определяют живые организмы, осуществляя круговорот неорганических и органических веществ.
Биогеохимические циклы – это циркуляция химических элементов абиотического происхождения, которые попадают из окружающей среды в организмы и из организмов в окружающую среду. В биосфере все время совершаются круговороты воды и всех элементов, входящих в состав
живых организмов. Процесс этот длится десятки миллионов лет. “На земной поверхности нет химической силы, более постоянно действующей, а поэтому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом” - утверждал В. И. Вернадский.
Неорганические элементы вносятся в ткани растений и животных в процессе их роста и развития и входят в состав органических веществ. После смерти организма эти элементы подвергаются сложным превращениям, после чего снова попадают в новые организмы. К главным циклам относятся биохимические циклы углерода, азота, воды, фосфора и серы.
Кругооборот углерода и кислорода осуществляется в близко идущих процессах. При дыхании высвобождается углерод в виде СО2, а в процессе фотосинтеза СО2 снова превращается в органические соединения. Всего за 7-8 лет живые организмы пропускают через свои тела
весь углерод, содержащийся в атмосфере. В океане (в основном в составе фитопланктона) 40·1012 кг углерода в год фиксируется в процессе фотосинтеза в виде СО2. Большая его часть потом высвобождается при дыхании. На суше фиксируется в год 35·1012 кг углерода при фотосинтезе в виде СО2; 10·1012 кг углерода выделяется при дыхании растений и животных; 25·1012 кг углерода выделяется при дыхании редуцентов(Редуценты потребляют часть питательных веществ, разлагают мертвые тела растений и животных до простых химических соединений (воды, углекислого газа и минеральных солей), замыкая таким образом кругооборот веществ в биосфере.
5·1012 кг углерода в год высвобождается при сжигании ископаемого топлива. Этого количества вполне достаточно для постепенного увеличения концентрации двуокиси углерода в атмосфере и в океанах. Большая доля углерода содержится в осадочных породах. В последние годы поступление углерода в атмосферу вследствие деятельности человека резко возросло, что может привести к серьезным последствиям для биосферы.
Кругооборот азота имеет свое своеобразие. Известно, что в атмосфере содержится 79% азота, но сам азот как элемент очень инертен и поэтому редко встречается в связанном состоянии. Он входит в состав аминокислот и белков. В биологический круговорот азот атмосферы вовлекается в основном благодаря биологической фиксации микроорганизмами (азотфиксация). В атмосферу азот возвращается в результате денитрификации, которая осуществляется как при участии бактерий, так и в ходе химических реакций без участия организмов. Важно, что никакой другой элемент так не ограничивает ресурсы питательных веществ в экосистемах, как азот. Круговорот азота в большинстве сообществ замкнутый, лишь небольшие количества этого элемента выносятся из наземных сообществ со стоком (в масштабах биосферы реки выносят в океан около 30 млн.т азота в год).
Земная кора содержит много серы, растения ее получают в основном в виде сульфатов. Сера является необходимым компонентом почти всех белков. Животные восполняют потребности в сере, получая ее от растений. В годы интенсификации хозяйственной деятельности человека поступление серы в атмосферу все время возрастает (в виде, например, окислов серы - сернистого газа SO2).
Растворяясь в воде, окислы образуют кислоты. Имеет место выпадение кислотных дождей, приводящих к изменению экологической обстановки, часто с негативными последствиями.
Кругооборот фосфора менее сложен, поскольку его в газообразном состоянии нет. Миграция фосфора осуществляется за счет живых организмов, а значительная часть попадает в конечном счете в океан и откладывается в осадочных породах.
Фосфор - сравнительно мало распространенный элемент и, подобно азоту и калию, часто бывает фактором, лимитирующим продуктивность экосистем. Фосфор – необходимый компонент нуклеиновых кислот, АТФ, белков и ряда жизненно важных органических веществ.
Кругооборот воды осуществляется в основном за счет энергии Солнца, но организмы оказывают на него свое регулирующее действие. Вода является источником водорода, в которой водород химически связан с кислородом, а также донором водорода при фотосинтезе, а сама по себе она является составной частью живых клеток. Роль ее заключается также в том, что она - важный климатический фактор и среда для водных организмов. Круговорот воды называется гидрологическим циклом, и в этом цикле вода может находиться в газообразном, жидком и твердом состояниях. С поверхности океанов испаряется больше воды, чем выпадает над океанами в виде осадков. “Лишняя” испарившаяся вода переносится в виде пара атмосферными потоками, выпадает в виде осадков над сушей и поступает снова в океаны с поверхностным речным стоком и через грунтовые воды.
Доступная для наземных животных вода составляет ничтожную часть от ее общего количества - всего около 0.01%. Незначительная часть воды, проходящей через тела растений, разлагается при фотолизе воды на кислород, выделяемый в атмосферу, и водород, включаемый в состав органических веществ. Много больше воды растения расходуют на транспирацию (поглощают воду из почвы и испаряют в атмосферу).
Главнейшую роль в жизни на Земле играет непрерывно поступающий поток энергии Солнца: 10.5·1029 кДж/год (2.5·1020 ккал/год). 42% солнечной энергии отражается Землей в мировое пространство, 58% поглощается атмосферой и почвой. Из этого количества Землей излучается более 20%, а 10% расходуется на испарение воды с поверхности Мирового океана. Падающая на Землю солнечная энергия аккумулируется зелеными растениями и поступает с ними в другие организмы. Зеленые растения образуют в год около 100 млрд.т органического вещества, содержащего около 1800·1015 кДж (450·1015 ккал) энергии. Одновременно они поглощают около 170 млрд. т СО2, выделяют около 115 млрд.т О2 и испаряют 16·1012 т воды (цифры примерные, так как разные расчеты дают различающиеся данные).
Образование органических веществ за счет энергии Солнца - эндотермический процесс, а окисление - экзотермический процесс. Окисление органических веществ в процессах дыхания, брожения, гниения с выделением тепла, Н2О и СО2 имеет почти такие же масштабы, как и процесс фотосинтеза.
Солнечная энергия определяет масштабные климатические, геологические и биологические процессы. Под влиянием биосферы она преобразуется в различные формы энергии, вызывающие огромные по масштабам и скорости превращения, миграции и круговороты веществ, увеличение и распространение биомассы.
Эволюция биосферы. Часть 1.
Все эволюционные теории, начиная с той, которая была начата Ч. Дарвином, базируются на представлении о развитии от простого к сложному. Это представление сталкивается с противоречиями, которых накапливается все больше. В частности, оно противоречит известному в кибернетике правилу Эшби: управляемая система никогда не может быть более сложной от управляющей, она всегда более простая. Это правило иногда высказывают так: горшок никогда не может быть более сложным чем гончар. Открытие и изучение генетического кода свидетельствует, что индивидуальное развитие любого живого существа (онтогенез) и развитие систематической группы существ (филогенез) быстрее похожие на редактирование и распечатку готового текста или введения в ЭВМ программы, зашифрованной в дискете. При этом наблюдается такой парадокс: организмы воссоздают себя, то есть воссоздают новые организмы без уменьшения сложности своего строения. Наоборот, палеонтологам известные такие продолжительные периоды эволюции, на протяжении которых сложность организмов увеличивалась. А тем временем попытки кибернетиков создать автоматы, способные самовозобновлять себя (то есть «размножаться»), натолкнулись на непреодолимое препятствие: в процессе самовоспроизведения механических систем неминуемо наблюдается уменьшение их сложности («вырождение»). Причину такого несоответствия живых и механических систем М. Камшилов усматривает в том, что «живые организмы также не являются самовоспроизводимыми. Они воссоздают себя в условиях чрезвычайно сложной среды — биосферы». Другими словами, организмы получают некоторые «руководящие указания», информацию из внешней среды, из биосферы, причем система, которая руководит развитием индивида, развертыванием информации, записанной в его генетическом коде, намного более сложнее самого организма. Что же это за система?
В последнее время все более убедительными кажутся выводы В. Вернадского о том, что биосфера в своем развитии руководствуется информацией, которая поступает из Космоса. Он утверждал, что «космические излучения, которые идут от всех небесных тел, охватывают биосферу, пронизывают всю ее и все в ней... Биосферу нельзя понять в явлениях, которые в ней происходят, если будет упущена эта ее резко выступающая связь со строением всего космического механизма».
Впервые теснейшую связь процессов в биосфере с космическими, солнечными процессами открыл выдающийся русский ученый О. Чижевский. Он доказал, что биосфера находится под влиянием многих электромагнитных и других излучений, которые поступают от Солнца и отдаленных Галактик. Урожайность сельскохозяйственных растений, периоды массового размножения многих животных, таких, как саранча, эпидемии, пики сердечно-сосудистых заболеваний людей и много других процессов в биосфере, теснейшим образом связаны с процессами на Солнце (солнечными вспышками, пятнами и т.п.). «Мы — дети Солнца», — так образно высказался Чижевский.
Универсальную роль носителей информации в биосфере играют электромагнитные поля. Это обусловлено тем, что из всех известных нам мыслимых типов связи именно связь на основе электромагнитных полей есть наиболее информативная и экономическая. Электромагнитные поля как средство связи в биосфере сравнительно со звуковой, световой или химической информацией имеют такие преимущества:
- распространяются в любой среде жизни — воде, воздухе, грунте и тканях организмов;
- имеют максимальную скорость распространения;
- могут распространяться в любую погоду и независимо от времени года;
- могут передаваться на любое расстояние;
- могут поступать на Землю из Космоса;
- на них реагируют все биосистемы (в отличие от других сигналов).
Раньше биологи учитывали лишь электромагнитные излучения Солнца в высокоэнергетическом участке его спектра — инфракрасные, видимые и ультрафиолетовые части диапазона — как источник энергии для всего живого. Лишь в последние десятилетия они начали давать себе отчет в той роли, которую сыграют в живой природе электромагнитные поля земного и космического происхождения в диапазонах радиочастот, низких и инфранизких частот. Оказалось, что именно эти слабые энергетическое сигналы несут информацию, которая воспринимается, накапливается и используется организмами. Это вопросы еще очень мало изучены. Тем не менее, на основании тех сведений, которые имеют сегодня гелио- и космобиологи, можно утверждать, что функционирование биосферы в целом связанно с информационными сигналами космического происхождения. Как считает американский биолог К. Гробстайн, «невозможно рассматривать жизнь как сугубо земное явление — оно стало неотъемлемой от Вселенной и ее эволюции».
Установлено, что чувствительность организмов к электромагнитным сигналам увеличивается с осложнением строения организмов. Так, позвоночные животные намного чуствительнее к электромагнитным полям, чем беспозвоночные и тем более — простейшие.
Со времени появления работ Ч.Дарвина традиционно считается, что генетическую информацию контролирует окружающая среда путем естественного отбора наиболее приспособленных индивидов. При этом совсем не учитывается, что лучше всего приспособленные к разнообразнейшим земным условиям именно простейшие существа — бактерии, сине-зеленые водоросли. Они существуют на Земле без заметных перемен своей организации на протяжении миллиардов лет. Простейшие властвовали на нашей планете в архейскую эру и из того времени настолько существенным образом изменили окружающую среду и биосферу в целом, что с появлением новых, сложно организованных организмов вынужденные были отойти на задний план.
Сегодня прокариоты (простейшие организмы без клеточного ядра) процветают там, где никто другой существовать не может — в концентрированных рассолах некоторых озер, высокотемпературных гидротермальных источниках, даже в ядерных реакторах. Эти организмы действительно хорошо приспособлены к условиям среды. Они действуют за стратегией максимальной стойкости, консерватизма, сохранение достигнутого уровня совершенства. Имея качества, которые надежно обеспечивают жизнедеятельность прокариота и записанные в его генетической системе, он делает все новые и новые копии этого генетического текста. Как образно высказался Р.Баландин, у таких организмов «торжествует стандартизация, а творческие порывы приглушены или запрещены».
Эволюция биосферы. Часть 2.
Другим примером эволюционного тупика есть история муравьев и термитов. Колонии этих насекомых идеально приспособились к условиям жизни, создав свои подземные хранилища и искусственно поддерживая в них климат той далекой эпохи, когда они впервые появились на Земле. Развитие муравьев и термитов прекратилось по крайней мере в палеогене, то есть 65 млн лет тому назад.
Появление эвкариотов (организмов, в клетках которых есть ядро), сначала одноклеточных, а со временем и многоклеточных, начало новую стадию эволюционного развития — проявление кооперации. Объединение организмов (симбиоз, кооперация) обеспечивало более интенсивное усвоение свободной энергии. Значение кооперативных связей на протяжении всей истории эволюции биосферы беспрерывно возрастало и стало решающей с появлением на Земле Разума. Более широкие возможности для развития имеют те организмы, которые, легко изменяясь, черпают новую информацию от других организмов и из окружающей среды, в частности из Космоса. У этих организмов (а их сегодня на Земле большинство) ярко выраженный, по словам Р. Баландина, «порыв к разнообразию, неожиданных решений, свободы творчества
Итак, биосфера сформировалась на ранних этапах развития жизнь на Земле, причем очень быстро и уже в довольно сложном виде. К. Циолковский считал, что многочисленные виды простейших организмов зародились на Земле одновременно. Эту же мысль неоднократно подчеркивал В. Вернадский, считая, что комплекс одноклеточных организмов, способных не только существовать и воссоздаваться в окружающей среде, но и активно перестраивать его, за короткое время мог сформироваться и распространиться по всей поверхности планеты. В работе «Биогеохимические очерки» он пишет: «Следует неминуемо предположить, что, может, и менее сложная в основных чертах, чем сегодняшняя, и все же очень сложная жизненная среда сразу создалась на нашей планете как одно целое в догеологический ее период. Создался целый монолит жизни (жизненная среда), а не отдельный вид живых организмов...»
За три миллиарда лет комплекс простейших организмов (прокариотов) неузнаваемо изменил жизненную среду на Земле — состав ее атмосферы, гидросферы, верхних пластов литосферы. Не имея способности изменять себя, прокариоты (сине-зеленые водоросли, бактерии и т.п.) вынужденные были отступать, освобождая место для более сложных организмов с эффективной энергетикой. Ныне прокариоты остались преимущественно в таких биологических нишах, которые по своим характеристикам напоминают ранний докембрий — горячих источниках, бассейнах, пораженных сероводородом, и т.п. Они осваивают также ландшафты, которые создает человек своей непродуманной деятельностью. Уничтожая высокоорганизованные группы растений и животных (то есть конкурентов прокариотов), мы одновременно возвращаем в биосферу те вещества, которые были выведены из нее и захоронены в осадочных породах за счет жизнедеятельности простейших организмов — углекислый газ, оксиды серы, тяжелые металлы, соединения азота, фосфора и т.п. Таким образом, мы создаем такую среду, где нет места не только высшим организмам, но и нам самим.
Печальным примером такой деятельности является «цветение» водохранилищ. Резко затормозив течение реки, «подкармливая» эти застойные бассейны тысячами тонн фосфорных и азотных удобрений, которые смываются из полей, уничтожая пестицидами, которые в большом количестве попадают в моря с тех же полей, мы создаем идеальные условия для массового размножения сине-зеленых водорослей, вследствие чего вода становится отравляющей для всех других жителей. На берегах водохранилищ можно видеть результаты этого явления: скелеты рыбы, выброшенной на берег волнами. Да и просто гулять по берегу «рукотворного моря» не всегда приятно — если оно «цветет», стоит зловоние.
Сам творец теории естественного отбора Ч. Дарвин не мог объяснить такого явления, если в процессе эволюции имеют преимущества не наиболее прогрессивные формы. Напомним основные положения теории дарвинизма: любая черта организма закрепляется в следующих поколениях, если благодаря ей этот организм лучшее приспосабливается к условиям жизни. Естественная среда выполняет отбор — поэтому он и называется естественным. Лучше приспособленная особь имеет больше шансов выжить и дать больше потомков.
В последнее время ученые открывают все больше исключений из этого, казалось бы, стройного правила. Скажем, известный немецкий биолог Э. Майер обращает внимание на несоответствие закону естественного отбора процесса эволюции самого человека. По этому закону более приспособленный к окружающей среде есть умный просвещенный человек, который хорошо ориентируется в жизненных обстоятельствах — интеллектуал. Доказано также, что интеллект, главным образом, обусловлен генетической склонностью. Статистические сведения свидетельствуют, что люди, профессии которых требуют высокого интеллекта и вдобавок имеют более высокий уровень жизни, рождают в среднем меньше потомков, чем неквалифицированные рабочие. Что же значит, что человек деградирует? Многочисленные примеры этого мы видим и среди разных групп животных.
Чем же обусловлена изменчивость живых существ вообще? Знаменитый французский природовед Ж..Ламарк считал, что основной движущей силой эволюции является влияние окружающей среды. Скажем, предки жирафа попали в савану. Чтобы достать питательные листики деревьев, жираф «тренировал» свою шею, стараясь ее продлить. Выживали и давали потомство лишь длинношеие особи. Эту мысль привел к полнейшему абсурду Т. Лысенко, отстаивая «мичуринские» идеи, скажем, пшеница может превратиться в рожь в зависимости от условий окружающей среды (влажности, температуры и т.п.).
Открытие генетического кода разрешило приблизиться к разгадке этой тайны. Оказалось, что в двойной спирали ДНК зашифрованы все сведения об организме, и в соответствии с этой программой происходит его индивидуальное развитие. Все сведения о будущем существе — его рост, стать, цвет глаз и т.п. — закодированы в крохотной по объему и массой молекулярной структуре. Такой плотности записи информации, которой достигла природа в структурах, руководящих наследственностью, современная кибернетика добиться не может.
Значит, изменчивость организмов, появление новых видов в процессе эволюции связаны с изменениями записи в генетическом коде. Доказано, что генетическая информация изменяется под влиянием мутагенных факторов — радиации, активных химических веществ (таких как пестициды) и т.п. А тем временем окружающая среда все больше загрязняется этими факторами вследствие технологической деятельности человечества. Стоит вопрос, не готовим ли мы сами себе «генетическую катастрофу»?
На основании достижений генетики можно считать, что эволюция органического мира происходит за счет появления мутаций, то есть случайных отклонений в генетической записи под влиянием активных мутагенных факторов окружающей среды. Если эти новые свойства являются выгодными для организма, они закрепляются естественным отбором.
Однако результаты исследований генетиков свидетельствуют, что абсолютное большинство мутаций вредны для организма. Особи, которые появляются на мир после мутагенного влияния радиации или химикатов, являются бесплодными, нежизнеспособными, безобразными и т.п. Накопление мутаций генетического кода образно можно сравнить с накоплениями ошибок в тексте книжки. Возникновение нового вида организмов за счет мутаций является таким же маловероятным, как появление нового текста за счет увеличения количества ошибок. Кроме того, организм «сопротивляется» этому процессу — генетикам известный механизм «ремонта» поврежденного генетического кода, который действует автоматически в сложном наследственном аппарате и восстанавливает поврежденную запись (в случае, если повреждения являются не весьма значительными). Известно также, что искусственно созданные путем гибридизации новые виды имеют тенденцию с течением времени «расщепляться» на своих предшественников (например, гибрид волка и собаки через несколько поколений снова расщепляется на волков и собак). Как же возникают новые виды растений и животных?
Эволюция биосферы. Часть 3.
Если бы эволюция действительно происходила путем постепенного изменения тех или других видов с закреплением нужных за счет естественного отбора, то среди ископаемых остатков организмов должно бы быть огромное количество промежуточных форм. Подобно тому, как токарь, который работал бы лишь с помощью метода попыток и ошибок, кроме нужной детали выточил бы целые горы бракованных. Тем не менее в палеонтологической летописи мы имеем чрезвычайно мало (а преимущественно вообще не имеем) промежуточных форм — в определенном пласте горных пород находим остатки одних видов, а в сопредельном с ним — других. Объяснить это лишь «законом неполноты палеонтологической летописи» (что твердит, что в ископаемом состоянии к нам дошла лишь незначительная часть организмов, которые населяло планету в минувшие эпохи) нельзя. Почему из этой летописи исчезли именно промежуточные формы?
Известно, что в процессе онтогенеза зародыш повторяет предшествующие стадии развития своих далеких предков. Оплодотворенная клетка спустя некоторое время превращается в мешочек, похожий на примитивное чревополостное животное, потом — на существо, подобное рыбьему мальку, головастика и т.д. На определенных этапах зародыши всех животных похожие один на другого, лишь в некоторых из них развитие прекращается, а остаток эволюционирует дальше. Наибольшее количество промежуточных стадий проходят зародыши млекопитающих, а также и человека.
Об этом эволюционном ряде наши предки знали задолго до Ч.Дарвина. Вот как изображает ряд последовательных перевоплощений бога Вишну старинная индийская книга «Воплощение Вишну», написанная задолго до начала новой эры: рыба, черепаха, свинья, человек-лев, человек-карлик, человек с топором, Рама и Кришна. Этот последовательный ряд перевоплощений реально отображает эволюцию человека, если на смену рыбе приходит рептилия, потом млекопитающее, примат, гоминид (который имел невысокий рост). Далее появляется наш непосредственный предок-кроманьйонец («человек с топором»). Рама есть символом современного человека, а Кришна, следует думать, идеалом будущего - космическим человеком.
Отметим еще одну деталь, которая, возможно, поможет нам приблизиться к пониманию сути эволюционного процесса. Если мы сравним микроскопическое строение любой клетки организма человека и простейших организованных одноклеточных (например, инфузории), то не найдем принципиальных отличий. Тем не менее любая из клеток высокоорганизованных существ, кроме своих обычных функций (дыхание, обмена веществ и т.п.), выполняет также определенные функции, связанные с жизнедеятельностью всего организма. В изолированном состоянии клетка высокоорганизованного организма жить не может — она существует лишь в условиях сотрудничества и кооперации с другими клетками. Собственно организмом является не отдельная клетка, а вся их система, совокупность в целом, где на первый план выступают информационные связи, которые регулируют его слаженную деятельность.
Что же «подсказывает» оплодотворенной клетке, какие стадии ей належит пройти, на какой остановиться? Такая программа, с самого начала записанная в ее хромосомной структуре, помещается в геноме (совокупности генов) и начинает реализоваться с момента оплодотворения яйцеклетки (слияние со сперматозоидом). Строение генома высокоорганизованных существ фантастически сложное — в ДНК человека, например, насчитывается 3 млн. пар нуклеотидов. Сегодня генетики расшифровали лишь мизерную часть генома, то есть они имеют представление лишь о чрезвычайно маленькой частице этой программы. На протяжении последних лет американские биологи и кибернетики осуществляют сложные исследования по полной расшифровке с помощью ЭВМ генома человека. Добились пока что лишь определения последовательности в ДНК всех нуклеотидов.
Поскольку управляющая система всегда более сложная чем управляемая, стоит вопрос: насколько же более сложной может быть та система, которая создала и «запустила» программу развития живых организмов, где заведомо было определено, как именно «будет раскручиваться» спираль эволюции? Назовите эту управляющую систему, как вам больше по душе: Всемогущей Природой, Космическим Умом, в конце концов, Богом — суть от этого не изменится. Главное же состоит в том, что вся эволюция земной биосферы была запрограммирована несравненно высшей и более сложной Космической Системой. И поскольку человек является неотъемлемой составной биосферы, определенной стадией ее запрограммированного развития, то вся его деятельность не должна противоречить общей программе эволюции биосферы.
Таким образом, каждое живое существо рождается, развивается, выполняет свою программу жизни как составная часть исполинского сверхорганизма — биосферы. И, в свою очередь, является порождением космического сверхорганизма - галактики. А все галактики являются будто клеточками сверх-сверхорганизма — Космоса. Ну, а что же породило Вселенную? Возможно, это вопросы вообще нельзя ставить. К. Циолковский сказал, что о Причине Космоса можно лишь догадываться.
Сегодня некоторые ученые, обсуждая управляющую роль Космоса в эволюции, употребляют термин «космическое информационное поле». В. Вернадский говорил о космических излучениях. В старинных индийских книгах упоминается о «вибрациях» Космоса, которые пронизывают всю земную жизнь, христиане верят в Святой Дух, который сходит с небес на Землю, некоторые другие религии вспоминают «астральный луч» и т.п. Все эти определения, в сущности, выражают одну мысль - руководство Космосом эволюции земной биосферы, которая является ее неотьемлимой частицей.
Можно констатировать еще одну черту эволюции, а именно — ее нарастающий темп. Палеонтологические сведения свидетельствуют именно об этом. Условно примем век Земли (4,5 млрд. лет) за одни сутки (24 ч). В таких временных единицах жизни Земля существует по крайней мере 20 ч, первые живые существа вышли из моря на сушу за 6 ч 35 мин, млекопитающие существуют 3 ч 46 мин, а человек - последние 10 с. Отсюда мы видим, насколько резко изменились состав и характеристики биосферы за эти последние 10 сек. «большого космического дня» Земли.