Энергия в экологических системах

А. А. Горелов

Экология: конспект лекций

Энергия в экологических системах - student2.ru

Серия: Хочу все сдать!

Издательство: Высшее образование, 2008 г.

Мягкая обложка, 192 стр.

Непосредственной сдаче экзамена или зачета по любой учебной дисциплине всегда предшествует достаточно краткий период, когда студент должен сосредоточиться, систематизировать свои знания. Выражаясь компьютерным языком, он должен "вывести информацию из долговременной памяти в оперативную", сделать ее готовой к немедленному и эффективному использованию. Специфика периода подготовки к экзамену или зачету заключается в том, что студент уже ничего не изучает (для этого просто нет времени): он лишь вспоминает и систематизирует изученное.

Предлагаемое пособие поможет студентам в решении именно этой задачи применительно к курсу "Экология".

Содержание и структура пособия соответствуют требованиям Государственного образовательного стандарта высшего профессионального образования.

Издание предназначено студентам высших учебных заведений.

Содержание

Предисловие

Тема 1. СТРОЕНИЕ ЭКОСИСТЕМ

1.1. Основные понятия экологии

1.2. Энергия в экологических системах

1.3. Биогеохимические круговороты

1.4. Организация на уровне сообщества

1.5. Организация на популяционном уровне

ТЕМА 2. ОСНОВНЫЕ ЗАКОНЫ И ПРИНЦИПЫ ЭКОЛОГИИ

2.1. Закон минимума

2.2. Закон толерантности

2.3. Обобщающая концепция лимитирующих факторов

2.4. Закон конкурентного исключения

2.5. Основной закон экологии

2.6. Некоторые другие важные для экологии законы и принципы

Тема 3. УЧЕНИЕ ВЕРНАДСКОГО О БИОСФЕРЕ И КОНЦЕПЦИЯ НООСФЕРЫ

3.1. Учение Вернадского о биосфере

3.2. Эмпирические обобщения Вернадского

3.3. Эволюция биосферы

3.4. Отличия растений от животных

3.5. Концепция ноосферы

Тема 4. КОНЦЕПЦИЯ КОЭВОЛЮЦИИ И ПРИНЦИП ГАРМОНИЗАЦИИ

4.1. Типы взаимодействия

4.2. Значение коэволюции

4.3. Гея-гипотеза

4.4. Принцип гармонизации

4.5. Принцип интегративного разнообразия

Тема 5. ЕСТЕСТВЕННОЕ РАВНОВЕСИЕ И ЭВОЛЮЦИЯ ЭКОСИСТЕМ

5.1. Равновесие и неравновесие

5.2. Особенности эволюции

5.3. Принцип естественного равновесия

5.4. Соотношение равновесия и эволюции

Тема 6. СОВРЕМЕННЫЙ ЭКОЛОГИЧЕСКИЙ КРИЗИС

6.1. Научно-техническая революция и глобальный экологический кризис

6.2. Современные экологические катастрофы

6.3. Реальные экологически негативные последствия

6.4. Потенциальные экологические опасности

6.5. Комплексный характер экологической проблемы

Тема 7. ЭКОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ НАУКИ И ТЕХНИКИ

7.1. Естественно-научные корни экологических трудностей

7.2. Тенденция экологизации науки

7.3. Идеал науки как целостной интегративно-разнообразной гармоничной системы

7.4. Экологическое значение техники

Тема 8. МОДЕЛИРОВАНИЕ В ЭКОЛОГИИ И КОНЦЕПЦИЯ УСТОЙЧИВОГО РАЗВИТИЯ

8.1. Математическое моделирование в экологии

8.2. Глобальное моделирование

8.3. Концепция устойчивого развития

Тема 9. ПОСЛЕДСТВИЯ ГЛОБАЛЬНОГО ЭКОЛОГИЧЕСКОГО КРИЗИСА И БУДУЩЕЕ ЧЕЛОВЕЧЕСТВА

9.1. Перспективы устойчивого развития природы и общества

9.2. Экологическая политика: сотрудничество и борьба

9.3. Экологическое общество как тип общественного устройства

Тема 10. ЭКОЛОГИЧЕСКАЯ ЭТИКА И ЭКОЛОГИЧЕСКИЙ ГУМАНИЗМ

10.1. Агрессивно-потребительский и любовно-творческий типы личности

10.2. Экологическая и глобальная этика

10.3. Эволюция гуманизма

10.4. Принципы экологического гуманизма

Тема 11. ЭКОЛОГИЯ И КУЛЬТУРА

11.1. Экологическая идеология

11.2. Экологическая культура

11.3. Экологическая философия

11.4. Экологическое искусство

Словарь терминов

Список рекомендуемой литературы ко всему курсу

Предисловие

Слово «экология» стало сейчас широко известным и общеупотребительным. В начале ХХ века его знали только ученые-биологи. Во второй половине XX века, когда разразился глобальный кризис, возникло экологическое движение, принимавшее все более широкий размах. Предмет «экология» стал вводиться в среднюю и высшую школу для студентов естественников и гуманитариев. На рубеже III тысячелетия это понятие достигло высшего политического уровня, и экологический императив стал влиять на развитие материального производства и духовной культуры.
В настоящее время предмет «экология» читается студентам разных специальностей с учетом специфики их будущей профессии. Готовя данное учебное пособие к печати, автор старался учесть различные особенности преподавания данного предмета и в то же время не потерять целостности его понимания.

Тема 1. СТРОЕНИЕ ЭКОСИСТЕМ

Основные понятия экологии

В буквальном смысле слово «экология» означает «наука о доме» (от греч. «ойкос» – жилище, местообитание). Термин «экология» предложил немецкий зоолог Э. Геккель в XIX веке, но как наука экология возникла в начале ХХ века, а в широкий обиход это слово вошло в 60-х годах, когда стали говорить об экологическом кризисе как кризисе во взаимоотношениях человека со средой его обитания.
Как часть биологического цикла, экология – наука о местообитании живых существ, их взаимоотношении с окружающей средой. Экология изучает организацию и функционирование надорганизменных систем различных уровней, вплоть до глобального, т. е. до биосферы в целом.
Предмет экологии разделяется тремя способами. Во-первых, выделяют аутэкологию, которая исследует взаимодействие отдельных организмов и видов со средой, и синэкологию, которая изучает сообщество. Во-вторых, разделение идет по типам сред, или местообитаний, – экология пресных вод, моря, суши, океана. В-третьих, экология разделяется на таксономические ветви – экологию растений, экологию насекомых, экологию позвоночных и т. д., вплоть до экологии человека. Рассматриваются также различные области практического приложения экологии – природные ресурсы, загрязнение среды и т. п.
Основные понятия экологии: популяция, сообщество, местообитание, экологическая ниша, экосистема. Популяцией (от лат. populus– народ) называется группа организмов, относящихся к одному виду и занимающих определенную область, называемую ареалом. Сообществом, или биоценозом, называют совокупность растений и животных, населяющих участок среды обитания. Совокупность условий, необходимых для существования популяций, носит название экологической ниши. Экологическая ниша определяет положение вида в цепях питания.
Совокупность сообщества и среды носит название экологической системы, или биогеоценоза (различия между этими понятиями для нас пока несущественны). Ю. Одум дает такое определение: «Любое единство, включающее все организмы (т. е. „сообщество“) на данном участке и взаимодействующее с физической средой таким образом, что поток энергии создает четко определенную трофическую структуру, видовое разнообразие и круговорот веществ (т. е. обмен веществами между биотической и абиотической частями) внутри системы, представляет собой экологическую систему, или экосистему» (Ю. Одум. Основы экологии. М., 1975, с. 16).
Термин «экосистема» был введен английским экологом А. Тэнсли в 1935 году. В 1944 году В. Н. Сукачевым предложен термин «биогеоценоз», а В. И. Вернадский использовал понятие «биокосное тело». Главное значение этих понятий состоит в том, что они подчеркивают обязательное наличие взаимоотношений, взаимозависимости и причинно-следственных связей, иначе говоря, объединение компонентов в функциональное целое. В качестве примера экосистемы можно привести озеро, лес и т. п. Экосистемы очень различны. Всю биосферу можно рассматривать как совокупность экосистем от голубого океана, в котором преобладают мелкие организмы, но плотность биомассы велика, до высокого леса с крупными деревьями, но меньшей общей плотностью биомассы.
Выделяют два подхода к изучению экологической системы: аналитический, когда изучают отдельные части системы, и синтетический, рассматривающий всю систему в целом. Оба подхода дополняют друг друга. В зависимости от характера питания в экосистеме строится пирамида питания, состоящая из нескольких трофических (от греч. «трофе» – питание) уровней. Низший занимают автотрофные (буквально: самостоятельно питающиеся) организмы, для которых характерны фиксация световой энергии и использование простых неорганических соединений для синтеза сложных органических веществ. К этому уровню относятся прежде всего растения. На более высоком уровне располагаются гетеротрофные (буквально: питающиеся другими) организмы, использующие в пищу биомассу растений, для которых характерны утилизация, перестройка и разложение сложных веществ. Затем идут гетеротрофы второго порядка, питающиеся гетеротрофами первого порядка, т. е. животными. Экологическая пирамида, или пирамида питания, хорошо запоминается со школьных уроков биологии.
В целом в составе экосистемы выделяют три неживых и три живых компонента: 1) неорганические вещества (азот, углекислый газ, вода и др.), включающиеся в природные кругообороты; 2) органические соединения (белки, углеводы и т. д.); 3) климатический режим (температура, свет, влажность и другие физические факторы); 4) продуценты (автотрофные организмы, главным образом зеленые растения, которые создают пищу из простых неорганических веществ); 5) макроконсументы – гетеротрофные организмы, главным образом животные, которые поедают другие организмы; 6) микроконсументы, или редуценты, – гетеротрофные организмы, преимущественно бактерии и грибы, «которые разрушают сложные соединения мертвой протоплазмы, поглощают некоторые продукты разложения и высвобождают неорганические питательные вещества, пригодные для использования продуцентами, а также органические вещества, способные служить источниками энергии, ингибиторами или стимуляторами для других биотических компонентов экосистемы» (Там же).
Взаимодействие автотрофных и гетеротрофных компонентов – один из самых общих признаков экосистемы, хотя часто эти организмы разделены в пространстве, располагаясь в виде ярусов: автотрофный метаболизм наиболее интенсивно протекает в верхнем ярусе – «зеленом поясе», где наиболее доступна световая энергия, а гетеротрофный метаболизм преобладает внизу, в почвах и отложениях, – «коричневом поясе», в котором накапливается органическое вещество.
Пирамида питания определяет круговорот веществ в биосфере, который выглядит следующим образом:

Энергия в экологических системах - student2.ru

Экология показала, что живой мир – не простая совокупность существ, а единая система, сцементированная множеством цепочек питания и иных взаимодействий. Каждый организм может существовать только при условии постоянной тесной связи со средой. Интенсивность метаболизма в экосистеме и его относительная стабильность определяются в значительной мере потоком солнечной энергии и перемещением химических веществ.
Отдельные организмы не только приспособлены к физической среде, но и своим совместным действием в рамках экосистемы приспосабливают геохимическую среду к своим биологическим потребностям. Из простых веществ, содержащихся в море, в результате деятельности животных (кораллов и др.) и растений построены целые острова. Состав атмосферы также регулируется организмами.
В создании кислорода атмосферы и органических веществ главную роль играет фотосинтез, который протекает по такой схеме:

углекислый газ + вода + солнечная энергия (в присутствии ферментов, связанных с хлорофиллом) = глюкоза + кислород.

Этот процесс преобразования части солнечной энергии в органическое вещество путем фотосинтеза называют «работой зеленых растений». Таким образом производятся не только углеводы (глюкоза), но и аминокислоты, белки и другие жизненно важные соединения.
Эволюцию форм жизни обеспечило то, что в течение большей части геологического времени часть продуцируемого органического вещества не разлагалась, и преобладание органического синтеза вело к увеличению концентрации кислорода в атмосфере. Около 300 млн лет тому назад отмечался особенно большой избыток органической продукции, что способствовало образованию ископаемых горючих веществ, за счет которых человек совершил промышленную революцию.
Три функции сообщества в целом – продукция, потребление и разложение – тесно связаны друг с другом. Хотя мы считаем микроорганизмы «примитивными», человек не может существовать без микробов. «Разложение, следовательно, происходит благодаря энергетическим превращениям в организме и между ними. Этот процесс абсолютно необходим для жизни, так как без него все питательные вещества оказались бы связанными в мертвых телах и никакая новая жизнь не могла бы возникать... Однако гетеротрофное население биосферы состоит из большого числа видов, которые, действуя совместно, производят полное разложение» (Там же, с. 41). Наиболее устойчивым продуктом разложения является гумус, необходимый почве для роста растений.
Сбалансированность продуцирования и разложения – основное условие существования всего живого в биосфере. Отставание утилизации вещества, произведенного автотрофами, не только обеспечивает построение биологических структур, но и обусловливает существование кислородной атмосферы. «В настоящее время человек (разумеется неосознанно) начинает ускорять процессы разложения в биосфере, сжигая органическое вещество, запасенное в виде ископаемых горючих веществ (угля, нефти, газа), и интенсифицируя сельскохозяйственную деятельность, которая повышает скорость разложения гумуса» (Там же). В результате увеличивается содержание углекислого газа в атмосфере, который подобно стеклу поглощает инфракрасное излучение, испускаемое земной поверхностью, создавая так называемый парниковый эффект. Люди оказываются как бы в гигантском парнике со всеми вытекающими отсюда последствиями для глобального климата.
«Среднеглобальная температура атмосферы у поверхности Земли около 15 оС. За последний 1 миллион лет она изменялась в пределах 5 оС похолодания и 2 оС потепления. При изменении среднеглобальной температуры на 10 оС, т. е. в 1,5 раза от современного уровня, скорее всего, будет нацело нарушено действие принципа Ле Шателье – Брауна (об этом принципе см. ниже. – А. Г.) – биота как бы сама себя «съест», так как процессы обмена веществ, усиливаясь, приведут не к сопротивлению изменениям в окружающей биоту среде, а к быстрой самодеструкции биосферы» (Н. Ф. Реймерс. Надежды на выживание человечества: концептуальная экология. М., 1992, с. 63). Потенциальные опасности данного процесса – таяние полярных льдов и установление тропического климата на всей Земле.
Все это свидетельствует о том, как важно учитывать тонкие механизмы биосферы – машины, которую надо знать и по крайней мере не мешать ее работе.
Экосистемы подобно организмам и популяциям способны к саморегулированию, противостоя изменениям и сохраняя состояние равновесия. Но для того, чтобы эти механизмы нормально функционировали, необходим период эволюционного приспособления к условиям среды, который называется адаптацией. Адаптация организма может быть структурной, физиологической и поведенческой. К структурной относится изменение окраски, строения тела и т. д. К физиологической относится, скажем, появление слуховой камеры у летучей мыши, позволяющей иметь идеальный слух. Пример поведенческой адаптации демонстрирует мотылек с полосатыми крыльями, садящийся на полосатые листья лилий так, чтобы его полоски были параллельны полоскам на листьях. Аналогичные механизмы адаптации существуют и на уровне экосистем в целом. Они не должны нарушаться человеком, иначе ему придется или самому конструировать их искусственные заменители, на что он пока не способен, или его ждет экологическая катастрофа, так как он не может существовать ни в какой иной среде, кроме биосферы.

Закон минимума

Ю. Либих в 1840 году установил, что урожай зерна часто лимитируется не теми питательными веществами, которые требуются в больших количествах, а теми, которых нужно немного, но которых мало и в почве. Сформулированный им закон гласил: «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени». Впоследствии к питательным веществам добавили ряд других факторов, например температуру.
Действие данного закона ограничивают два принципа. Первый: закон Либиха строго применим только в условиях стационарного состояния. Более точная формулировка: «при стационарном состоянии лимитирующим будет то вещество, доступные количества которого наиболее близки к необходимому минимуму». Второй принцип касается взаимодействия факторов. Высокая концентрация или доступность некоторого вещества может изменять потребление минимального питательного вещества. Организм иногда заменяет одно, дефицитное вещество другим, имеющимся в избытке.
Следующий закон сформулирован в самой экологии и обобщает закон минимума.

Закон толерантности

Он формулируется следующим образом: отсутствие или невозможность развития экосистемы определяется не только недостатком, но и избытком любого из факторов (тепло, свет, вода). Следовательно, организмы характеризуются как экологическим минимумом, так и максимумом. Слишком много хорошего тоже плохо. Диапазон между двумя величинами составляет пределы толерантности, в которых организм нормально реагирует на влияние среды. Закон толерантности предложил В. Шелфорд в 1913 году. Можно сформулировать ряд предложений, дополняющих его:
1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий в отношении другого.
2. Организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены.
3. Если условия по одному экологическому фактору не оптимальны для вида, то может сузиться диапазон толерантности к другим экологическим факторам.
4. В природе организмы очень часто оказываются в условиях, не соответствующих оптимальному значению того или иного фактора, определенному в лаборатории.
5. Период размножения обычно является критическим; в этот период многие факторы среды часто оказываются лимитирующими.
Живые организмы изменяют условия среды, чтобы ослабить лимитирующее влияние физических факторов. Виды с широким географическим распространением образуют адаптированные к местным условиям популяции, которые называются экотипами. Их оптимумы и пределы толерантности соответствуют местным условиям. В зависимости от того, закреплены ли экотипы генетически, можно говорить об образовании генетических рас или о простой физиологической акклимации.

Основной закон экологии

Одним из главных достижений экологии стало открытие, что развиваются не только организмы и виды, но и экосистемы. Последовательность сообществ, сменяющих друг друга в данном районе, называется сукцессией. Сукцессия происходит в результате изменения физической среды под действием сообщества, т. е. контролируется им. Замещение видов в экосистемах вызывается тем, что популяции, стремясь модифицировать окружающую среду, создают условия, благоприятные для других популяций; это продолжается до тех пор, пока не будет достигнуто равновесия между биотическими и абиотическими компонентами. Развитие экосистем во многом аналогично развитию отдельного организма и в то же время сходно с развитием биосферы в целом.
Сукцессия в энергетическом смысле связана с фундаментальным сдвигом потока энергии в сторону увеличения количества энергии, направленной на поддержание системы. Сукцессия состоит из стадий роста, стабилизации и климакса. Их можно различать на основе критерия продуктивности: на первой стадии продукция растет до максимума, на второй остается постоянной, на третьей уменьшается до нуля по мере деградации системы.
Наиболее интересно различие между растущими и зрелыми системами, которые можно представить в виде следующей таблицы.

Таблица 1

Эволюция биосферы

Эволюцию биосферы изучает раздел экологии, который называется эволюционной экологией. Следует отличать эволюционную экологию от экодинамики (динамической экологии). Последняя имеет дело с короткими интервалами развития биосферы и экосистем, в то время как первая рассматривает развитие биосферы на более длительном отрезке времени. Так, изучение биогеохимических круговоротов и сукцессии – задача экодинамики, а принципиальные изменения в механизмах круговорота веществ и в ходе сукцессии – задача эволюционной экологии.
Одним из важнейших направлений в изучении эволюции является изучение развития форм жизни. Здесь можно отметить несколько этапов:
1. Клетки без ядра, но имеющие нити ДНК (напоминают нынешние бактерии и сине-зеленые водоросли). Возраст таких самых древних организмов более 3 млрд лет. Их свойства: 1) подвижность; 2) питание и способность запасать пищу и энергию; 3) защита от нежелательных воздействий; 4) размножение; 5) раздражимость; 6) приспособление к изменяющимся внешним условиям; 7) способность к росту.
2. На следующем этапе (приблизительно 2 млрд лет тому назад) в клетке появляется ядро. Одноклеточные организмы с ядром называются простейшими. Их 25–30 тыс. видов. Самые простые их них – амебы. Инфузории имеют еще и реснички. Ядро простейших окружено двухмембранной оболочкой с порами и содержит хромосомы и нуклеоли. Ископаемые простейшие – радиолярии и фораминиферы – основные части осадочных горных пород. Многие простейшие обладают сложным двигательным аппаратом.
3. Примерно 1 млрд лет тому назад появились многоклеточные организмы. В результате растительной деятельности – фотосинтеза – из углекислоты и воды при использовании солнечной энергии, улавливаемой хлорофиллом, создавалось органическое вещество. Возникновение и распространение растительности привело к коренному изменению состава атмосферы, первоначально имевшей очень мало свободного кислорода. Растения, ассимилирующие углерод из углекислого газа, создали атмосферу, содержащую свободный кислород – не только активный химический агент, но и источник озона, преградившего путь коротким ультрафиолетовым лучам к поверхности Земли.
Л. Пастером выделены следующие две важные точки в эволюции биосферы: 1) момент, когда уровень содержания кислорода в атмосфере Земли достиг примерно 1 % от современного. С этого времени стала возможной аэробная жизнь. Геохронологически это архей. Предполагается, что накопление кислорода шло скачкообразно и заняло не более 20 тыс. лет: 2) достижение содержания кислорода в атмосфере около 10 % от современного. Это привело к возникновению предпосылок формирования озоносферы. В результате жизнь стала возможной на мелководье, а затем и на суше.
Палеонтология, которая занимается изучением ископаемых остатков, подтверждает факт возрастания сложности организмов. В самых древних породах встречаются организмы немногих типов, имеющих простое строение. Постепенно разнообразие и сложность растут. Многие виды, появляющиеся на каком-либо стратиграфическом уровне, затем исчезают. Это истолковывают как возникновение и вымирание видов.
В соответствии с данными палеонтологии можно считать, что в протерозойскую геологическую эру (700 млн лет назад) появлялись бактерии, водоросли, примитивные беспозвоночные; в палеозойскую (365 млн лет назад) – наземные растения, амфибии; в мезозойскую (185 млн лет назад) – млекопитающие, птицы, хвойные растения; в кайнозойскую (70 млн лет назад) – современные группы. Конечно, следует иметь в виду, что палеонтологическая летопись неполна.
Веками накапливавшиеся остатки растений образовали в земной коре грандиозные энергетические запасы органических соединений (уголь, торф), а развитие жизни в Мировом океане привело к созданию осадочных горных пород, состоящих из скелетов и других остатков морских организмов.
К важным свойствам живых систем относятся:
1. Компактность. 5 ? 10-15г ДНК, содержащейся в оплодотворенной яйцеклетке кита, заключена информация для подавляющего большинства признаков животного, которое весит 5 ? 107г (масса возрастает на 22 порядка).
2. Способность создавать порядок из хаотического теплового движения молекул и тем самым противодействовать возрастанию энтропии. Живое потребляет отрицательную энтропию и работает против теплового равновесия, увеличивая, однако, энтропию окружающей среды. Чем более сложно устроено живое вещество, тем более в нем скрытой энергии и энтропии.
3. Обмен с окружающей средой веществом, энергией и информацией.
Живое способно ассимилировать полученные извне вещества, т. е. перестраивать их, уподобляя собственным материальным структурам и за счет этого многократно воспроизводить их.
4. В метаболических функциях большую роль играют петли обратной связи, образующиеся при автокаталитических реакциях. «В то время как в неорганическом мире обратная связь между „следствиями“ (конечными продуктами) нелинейных реакций и породившими их „причинами“ встречается сравнительно редко, в живых системах обратная связь (как установлено молекулярной биологией), напротив, является скорее правилом, чем исключением» (И. Пригожин, И. Стенгерс. Порядок из хаоса. М., 1986, с. 209). Автокатализ, кросс-катализ и автоингибиция (процесс, противоположный катализу, если присутствует данное вещество, оно не образуется в ходе реакции) имеют место в живых системах. Для создания новых структур нужна положительная обратная связь, для устойчивого существования – отрицательная обратная связь.
5. Жизнь качественно превосходит другие формы существования материи в плане многообразия и сложности химических компонентов и динамики протекающих в живом превращений. Живые системы характеризуются гораздо более высоким уровнем упорядоченности и асимметрии в пространстве и времени. Структурная компактность и энергетическая экономичность живого – результат высочайшей упорядоченности на молекулярном уровне.
6. В самоорганизации неживых систем молекулы просты, а механизмы реакций сложны; в самоорганизации живых систем, напротив, схемы реакций просты, а молекулы сложны.
7. У живых систем есть прошлое. У неживых его нет. «Целостные структуры атомной физики состоят из определенного числа элементарных ячеек, атомного ядра и электронов и не обнаруживают никакого изменения во времени, разве что испытывают нарушение извне. В случае такого внешнего нарушения они, правда, как-то реагируют на него, но, если нарушение было не слишком большим, они по прекращении его снова возвращаются в исходное положение. Но организмы – не статические образования. Древнее сравнение живого существа с пламенем говорит о том, что живые организмы подобно пламени представляют собой такую форму, через которую материя в известном смысле проходит как поток» (В. Гейзенберг. Физика и философия. Часть и целое. М., 1989, с. 233).
8. Жизнь организма зависит от двух факторов – наследственности, определяемой генетическим аппаратом, и изменчивости, зависящей от условий окружающей среды и реакции на них индивида. Интересно, что сейчас жизнь на Земле не могла бы возникнуть из-за кислородной атмосферы и противодействия других организмов. Раз зародившись, жизнь находится в процессе постоянной эволюции.
9. Способность к избыточному самовоспроизводству. «Прогрессия размножения столь высокая, что она ведет к борьбе за жизнь и ее последствию – естественному отбору» (Ч. Дарвин. Соч. Т. 3. М.-Л., 1939, с. 666).

Концепция ноосферы

Глобальный характер взаимоотношений человека со средой его обитания привел к появлению понятия ноосферы, введенного Ле-Руа, а затем к концепции ноосферы, развитой Тейяром де Шарденом. Ноосфера, по Тейяру де Шардену, – это коллективное сознание, которое станет контролировать направление будущей эволюции планеты и сольется с природой в идеальной точке Омега, подобно тому, как раньше образовывались такие целостности, как молекулы, клетки и организмы. «Мы беспрерывно прослеживали последовательные стадии одного и того же великого процесса. Под геохимическими, геотектоническими, геобиологическими пульсациями всегда можно узнать один и тот же глубинный процесс – тот, который, материализовавшись в первых клетках, продолжается в созидании нервных систем. Геогенез, сказали мы, переходит в биогенез, который в конечном счете не что иное, как психогенез... Психогенез привел нас к человеку. Теперь психогенез стушевывается, он сменяется и поглощается более высокой функцией – вначале зарождением, затем последующим развитием духа – ноогенезом» (П. Тейяр де Шарден. Феномен человека. М., 1973, с. 180).
Свою интерпретацию концепции ноосферы дал на основе учения о биосфере В. И. Вернадский. Как живое вещество (это стало ясно, в частности, благодаря фундаментальным трудам Вернадского) преображает косную материю, являющуюся основой его развития, так человек неизбежно обладает обратным влиянием на природу, породившую его. Как живое вещество и косная материя, объединенные цепью прямых и обратных связей, образуют единую систему – биосферу, так человечество и природная среда образуют единую систему – ноосферу.
Развивая концепцию ноосферы вслед за Тейяром де Шарденом, Вернадский рассмотрел то, как на основе единства предшествующей стадии взаимодействия живой и косной материи на следующей стадии взаимодействия природы и человека может быть достигнута гармония. Ноосфера, по Вернадскому, «такого рода состояние биосферы, в котором должны проявляться разум и направляемая им работа человека, как новая небывалая на планете геологическая сила» (В. И. Вернадский. Размышления натуралиста. Кн. 2. Научная мысль как планетарное явление. М., 1977, с. 67).
Вернадский развил концепцию ноосферы как растущего глобального осознания усиливающегося вторжения человека в естественные биогеохимические циклы, ведущего, в свою очередь, ко все более взвешенному и целенаправленному контролю человека над глобальной системой.
К сожалению, Вернадский не закончил работу по развитию данной идеи. В концепции ноосферы представлен в полной мере один аспект современного этапа взаимодействия человека и природы – глобальный характер единства человека с природной средой. В период создания этой концепции противоречивость данного взаимодействия не проявилась с такой силой, как сейчас. В последние десятилетия в дополнение к глобальному характеру взаимоотношений человека и природной среды обнаружилась противоречивость этого взаимодействия, чреватая кризисными экологическими состояниями. Стало ясно, что единство человека и природы противоречиво хотя бы в том плане, что из-за увеличивающегося обилия взаимосвязей между ними растет экологический риск как плата человечества за преобразование природной среды.
За время своего существования человек сильно изменил биосферу. По мнению Н. Ф. Реймерса, «люди искусственно и нескомпенсированно снизили количество живого вещества Земли, видимо, не менее чем на 30 % и забирают в год не менее 20 % продукции всей биосферы» (Н. Ф. Реймерс. Надежды... с. 129). Такие цифры недвусмысленно свидетельствуют о том, что антропогенное изменение биосферы зашло слишком далеко. Биосфера превращается в техносферу, причем направленность антропогенного воздействия прямо противоположна направленности эволюции биосферы. Можно сказать, что с появлением человека начинается нисходящая ветвь эволюции биосферы – снижается биомасса, продуктивность и информационность биосферы. Антропогенные воздействия разрушают естественные системы природы. Как полагает Реймерс, «вслед за прямым уничтожением видов следует ожидать самодеструкции живого. Фактически этот процесс и идет в виде массового размножения отдельных организмов, разрушающих сложившиеся экосистемы» (Там же, с. 136). Таким образом, пока еще нельзя ответить на вопрос, создаст ли в будущем человек сферу разума или своей неразумной деятельностью погубит и себя, и все живое.
Далее. С выходом человека в космос область взаимодействия человека с природной средой перестала ограничиваться сферой Земли, и ныне данное взаимодействие пролегает по маршрутам космических кораблей. Понятие «ноосистема», возможно, было бы в наше время более точным, чем понятие «ноосфера», поскольку последняя после выхода людей в космос уже не соответствует пространственной конфигурации воздействия человека на природу. Понятие «ноосистема» предпочтительнее и в плане научного анализа экологической проблемы, так как оно ориентирует на применение развиваемого во второй половине ХХ века системного подхода к изучению объективной реальности.
Имеется еще одно важное соображение, неучтенное в концепции ноосферы. Человек взаимодействует со средой обитания не только разумно, но и чувственно, поскольку он сам существо не только разумное, а разумно-чувственное, в котором разумный и чувственный компоненты сложным образом переплетены. Конечно, чувственное не следует отрывать от разумного, и чувства могут быть как осознаны, так и нет. Тем не менее проведение здесь определенных различий вполне уместно и предохраняет от односторонних трактовок. Ноосферу не обязательно следует понимать как некий экологический идеал, поскольку не всегда с экологической точки зрения хорошо то, что преимущественно рационально, а само понятие разумного исторически изменчиво. Так, все современные технологические схемы, конечно же, по-своему разумны и рациональны в традиционном смысле слова, но часто дают отрицательный экологический эффект. В то же время такое чувство, как любовь к природе, не всегда может быть рационально интерпретировано и тем не менее способно весьма положительно повлиять на общую экологическую обстановку.
Однако концепция ноосферы сохраняет ценность, поскольку представляет единство человека и природы в виде процесса – ноогенеза, ведущего к становлению единой системы «человек – природная среда». Ноогенез – один из аспектов процесса становления родовой сущности человека, и его нельзя остановить, не отказываясь от актуализации и совершенствования потенциальных возможностей, заложенных в человеке как виде. Стремление к осуществлению своих целей в природе останется, по-видимому, главенствующим в определении человеком перспектив его взаимоотношений с природой с того момента, как он перешел от защиты своей видовой специфики к превращению ее в важный фактор формирования природной закономерности.
В целом концепция ноосферы напоминает натурфилософские построения и сциентистские утопии. Становление ноосферы – возможность, но не необходимость. Ценность этой концепции в том, что она дает конструктивную модель вероятного будущего, а ее ограниченность в том, что она рассматривает человека как прежде всего разумное существо, тогда как индивиды и тем более общество в целом редко ведут себя по-настоящему разумно. Пока человечество движется отнюдь не к ноосфере, и последняя остается одной из гипотез.

Типы взаимодействия

Выделяют следующие типы взаимодействия между популяциями: «1) нейтрализм, при котором ассоциация двух популяций не сказывается ни на одной из них; 2) взаимное конкурентное подавление, при котором обе популяции активно подавляют друг друга; 3) конкуренция из-за ресурсов, при которой каждая популяция неблагоприятно действует на другую при борьбе за пищевые ресурсы в условиях их недостатка; 4) аменсализм, при котором одна популяция подавляет другую, но сама не испытывает отрицательного влияния; 5) паразитизм; 6) хищничество, при котором одна популяция неблагоприятно воздействует на другую в результате прямого нападения, но тем не менее зависит от другой; 7) комменсализм, при котором одна популяция извлекает пользу из объединения, а для другой это объединение безразлично; 8) протокооперация, при которой обе популяции получают преимущества от объединения, но их связь не облигатна; 9) мутуализм, при котором связь популяций благоприятна для роста и выживания обеих» (Ю. Одум. Основы... с. 273). Ю. Одум подчеркивает два важ<

Наши рекомендации