Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания
Анализ и синтез
Под анализом понимают разделение объекта (мысленно или реально) на составные частицы с целью их отдельного изучения. В качестве таких частей могут быть какие-то вещественные элементы объекта или же его свойства, признаки, отношения и т. п.
Анализ - необходимый этап в познании объекта. С древнейших времен анализ применялся, например, для разложения на составляющие некоторых веществ. В частности, уже в Древнем Риме анализ использовался для проверки качества золота и серебра в виде так называемого купелирования (анализируемое вещество взвешивалось до и после нагрева). Постепенно формировалась аналитическая химия, которую по праву можно называть матерью современной химии: ведь прежде чем применять то или иное вещество в конкретных целях, необходимо выяснить его химический состав.
Заметим, что метод анализа сыграл в свое время важную роль в крушении теории флогистона. «Теория флогистона тормозила развитие химии... Новые открытия и полнейшая неудача попыток обнаружить флогистон аналитическим путем постепенно расшатывали теорию».
Однако в науке Нового времени аналитический метод был абсолютизирован. В указанный период ученые, изучая природу, «рассекали ее на части» (по выражению Ф. Бэкона) и, исследуя части, не замечали значения целого. Это было результатом метафизического метода мышления, который господствовал тогда в умах естествоиспытателей.
Несомненно, анализ занимает важное место в изучении объектов материального мира. Но он составляет лишь первый этап процесса познания. Если бы, скажем, химики ограничивались только анализом, т. е. выделением и изучением отдельных химических элементов, то они не смогли бы познать все те сложные вещества, в состав которых входят эти элементы. Сколь бы глубоко ни были изучены, например, свойства углерода и водорода, по этим сведениям еще ничего нельзя сказать о многочисленных веществах, состоящих из различного сочетания этих химических элементов.
Для постижения объекта как единого целого нельзя ограничиваться изучением лишь его составных частей. В процессе познания необходимо вскрывать объективно существующие связи между ними, рассматривать их в совокупности, в единстве. Осуществить этот второй этап в процессе познания - перейти от изучения отдельных составных частей объекта к изучению его как единого связанного целого - возможно только в том случае, если метод анализа дополняется другим методом - синтезом.
В процессе синтеза производится соединение воедино составных частей (сторон, свойств, признаков и т. п.) изучаемого объекта, расчлененных в результате анализа. На этой основе происходит дальнейшее изучение объекта, но уже как единого целого. При этом синтез не означает простого механического соединения разъединенных элементов в единую систему. Он раскрывает место и роль каждого элемента в системе целого, устанавливает их взаимосвязь и взаимообусловленность, т. е. позволяет понять подлинное диалектическое единство изучаемого объекта.
Анализ и синтез с успехом используются и в сфере мыслительной деятельности человека, т. е. в теоретическом познании. Но и здесь, как и на эмпирическом уровне познания, анализ и синтез - это не две оторванные друг от друга операции. По своему существу они - как бы две стороны единого аналитико-синтетического метода познания. Как подчеркивал Ф. Энгельс, «мышление состоит столько же в разложении предметов сознания на их элементы, сколько в объединении связанных друг с другом элементов в некоторое единство. Без анализа нет синтеза».
Аналогия и моделирование
Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.
Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объектами, то этот вывод называют умозаключением по аналогии. Ход такого умозаключения можно представить следующим образом. Пусть имеется, например, два объекта: А и В. Известно, что объекту А присущи свойства Р1 Р2, ..., Рп. Изучение объекта В показало, что ему присущи свойства Р1, Р2, …, Рп, совпадающие, соответственно, со свойствами объекта А. На основании сходства ряда свойств (Р1, Р2,..., Р) у обоих объектов может быть сделано предположение о наличии свойства Рп+1 у объекта В.
Степень вероятности получения правильного умозаключения по аналогии будет тем выше:
1) чем больше известно общих свойств у сравниваемых объектов;
2) чем существеннее обнаруженные у них общие свойства и
3) чем глубже познана взаимная закономерная связь этих сходных свойств. При этом нужно иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свойством, не совместимым с тем свойством, о существовании которого должен быть сделан вывод, то общее сходство этих объектов утрачивает всякое значение.
Указанные соображения об умозаключении по аналогии можно дополнить также и следующими правилами:
1) общие свойства должны быть любыми свойствами сравниваемых объектов, т. е. подбираться «без предубеждения» против свойств какого-либо типа;
2) свойство Рп+1 должно быть того же типа, что и общие свойства Р1, Р2, ..., Рп;
3) общие свойства Р1, Р2, ..., Рп должны быть возможно более специфичными для сравниваемых объектов, т. е. принадлежать возможно меньшему кругу объектов;
4) свойство Р=1, наоборот, должно быть наименее специфичным, т. е. принадлежать возможно большему кругу объектов.
Метод аналогии применяется в самых различных областях науки: в математике, физике, химии, кибернетике, в гуманитарных дисциплинах и т. д. О познавательной ценности метода аналогии хорошо сказал известный ученый-энергетик В.А. Веников: «Иногда говорят: Аналогия — не доказательство. Но ведь если разобраться, можно легко понять, что ученые и не стремятся только таким путем доказать что-нибудь. Разве мало того, что верно увиденное сходство дает могучий импульс творчеству?.. Аналогия способна скачком выводить мысль на новые, неизведанные орбиты, и безусловно правильно положение о том, что аналогия, если обращаться с ней с должной осторожностью, - наиболее простой и понятный путь от старого к новому».
Существуют различные типы выводов по аналогии. Но общим для них является то, что во всех случаях непосредственному исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно и подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда - прототипом, образцом и т. д.). Таким образом, модель всегда выступает как аналогия, т. е. модель и отображаемый с ее помощью объект (оригинал) находятся в определенном сходстве (подобии).
Под моделированием понимается изучение моделируемого объекта (оригинала), базирующееся на взаимооднозначном соответствии определенной части свойств оригинала и замещающего его при исследовании объекта (модели) и включающее в себя построение модели, изучение ее и перенос полученных сведений на моделируемый объект-оригинал.
В зависимости от характера используемых в научном исследовании моделей различают несколько видов моделирования.
1.Мысленное (идеальное) моделирование. К этому виду моделирования относятся самые различные мысленные представления в форме тех или иных воображаемых моделей. Например, в идеальной модели электромагнитного поля, созданной Дж. Максвеллом, силовые линии представлялись в виде трубок различного сечения, по которым течет воображаемая жидкость, не обладающая инерцией и сжимаемостью. Модель атома, предложенная Э. Резерфордом, напоминала Солнечную систему: вокруг ядра («Солнца») обращались электроны («планеты»). Следует заметить, что мысленные (идеальные) модели нередко могут быть реализованы материально в виде чувственно воспринимаемых физических моделей.
2.Физическое моделирование. Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих (или могущих произойти) в так называемых «натуральных условиях». Пренебрежение результатами таких модельных исследований может иметь тяжелые последствия. Поучительным примером этого является вошедшая в историю гибель английского корабля-броненосца «Кэптэн», построенного в 1870 г. Исследования известного ученого-кораблестроителя В. Рида, проведенные на модели корабля, выявили серьезные дефекты в его конструкции. Но заявление ученого, обоснованное опытом с «игрушечной моделью», не было принято во внимание английским Адмиралтейством. В результате при выходе в море «Кэптэн» перевернулся, что повлекло за собой гибель более 500 моряков.
В настоящее время физическое моделирование широко используется для разработки и экспериментального изучения различных сооружений (плотин электростанций, оросительных систем и т. п.), машин (аэродинамические качества самолетов, например, исследуются на их моделях, обдуваемых воздушным потоком в аэродинамической трубе), для лучшего понимания каких-то природных явлений, для изучения эффективных и безопасных способов ведения горных работ и т. д.
3. Символическое (знаковое) моделирование. Оно связано с условно-знаковым представлением каких-то свойств, отношений объекта-оригинала. К символическим (знаковым) моделям относятся разнообразные топологические и графовые представления (в виде графиков, номограмм, схем и т. п.) исследуемых объектов или, например, модели, представленные в виде химической символики и отражающие состояние или соотношение элементов во время химических реакций.
Особой и очень важной разновидностью символического (знакового) моделирования является математическое моделирование. Символический язык математики позволяет выражать свойства, стороны, отношения объектов и явлений самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование такого объекта или явления, могут быть представлены соответствующими уравнениями (дифференциальными, интегральными, интегро-дифференциальными, алгебраическими) и их системами. Получившаяся система уравнений вместе с известными данными, необходимыми для ее решения (начальные условия, граничные условия, значения коэффициентов уравнений и т. п.), называется математической моделью явления.
Математическое моделирование может применяться в особом сочетании с физическим моделированием. Такое сочетание, именуемое вещественно-математическим (или предметно-математическим) моделированием, позволяет исследовать какие-то процессы в объекте-оригинале, заменяя их изучением процессов совсем иной природы (протекающих в модели), которые, однако, описываются теми же математическими соотношениями, что и исходные процессы. Так, механические колебания могут моделироваться электрическими колебаниями на основе полной идентичности описывающих их дифференциальных уравнений.
В настоящее время вещественно-математическое моделирование нередко реализуется с помощью электронных аналоговых устройств, которые позволяют создавать математическую аналогию между процессами, протекающими в объекте-оригинале и в специально организованной электронной схеме. Последняя и обеспечивает получение новой информации о процессах в исследуемом объекте.
4. Численное моделирование на электронных вычислительных машинах (ЭВМ). Эта разновидность моделирования основывается на ранее созданной математической модели изучаемого объекта или явления и применяется в случаях больших объемов вычислений, необходимых для исследования данной модели. При этом для решения содержащихся в ней систем уравнений с помощью ЭВМ необходимо предварительное составление программы (совокупности предписаний для вычислительной машины). Эта программа выполняется затем электронной вычислительной машиной в виде последовательности элементарных математических и логических операций. В данном случае ЭВМ вместе с введенной в нее программой представляет собой материальную систему, реализующую численное моделирование исследуемого объекта или явления.
Численное моделирование особенно важно там, где не совсем ясна физическая картина изучаемого явления, не познан внутренний механизм взаимодействия. Путем расчетов на ЭВМ различных вариантов ведется накопление фактов, что дает возможность в конечном счете произвести отбор наиболее реальных и вероятных ситуаций. Активное использование методов численного моделирования позволяет резко сократить сроки научных и конструкторских разработок.
Метод моделирования непрерывно развивается: на смену одним типам моделей по мере прогресса науки приходят другие. В то же время неизменным остается одно: важность, актуальность, а иногда и незаменимость моделирования как метода научного познания.
Вопросы для самоконтроля
1.Как принято подразделять методы научного познания? В чем отличие всеобщих методов от общенаучных?
2.Какие условия необходимы для проведения научных экспериментов?
3.Что такое «"естественная система единиц»" в физике?
4.С чего всегда начинается процесс познания? Охарактеризуйте общую направленность научно-теоретического познания.
5.Что такое «"идеализация»" в естествознании? Раскройте роль мысленного эксперимента в научно-теоретических исследованиях.
6.Что понимается под формализацией в научном познании?
7.Чем язык современной науки отличается от обычного человеческого языка?
8.Назовите основные методы индукции.
9.Что такое моделирование в научном познании? Назовите известные вам виды моделирования.
История естествознания