От количества к качеству
Невозможность предсказать, какую точку в фазовом пространстве пересечет траектория аттрактора Лоренца в определенный момент времени, являет собой общую для хаотических систем особенность. Однако это вовсе не означает, что теория хаоса не дает оснований никаким предсказаниям. Возможны чрезвычайно точные прогнозы относительно качественных особенностей поведения системы, а не точных значений ее переменных в определенный момент времени. Новая математика, таким образом, представляет сдвиг от количества к качеству, что характерно Для системного мышления вообще. В то время как традиционная математика имеет дело с количествами и формулами, теория динамических систем связана с качеством и паттерном.
Действительно, анализ нелинейных систем с помощью топологических характеристик их аттракторов известен как количественный анализ. У нелинейной системы может быть несколько аттракторов разных типов, как хаотичных, или «странных», так и нехаотичных. Все траектории, начинающиеся в определенной области фазового пространства, рано или поздно приводят к одному и тому же аттрактору. Эта область называется сферой притяжения данного аттрактора. Таким образом, фазовое пространство нелинейной системы разбивается на несколько сфер притяжения, каждой из которых соответствует ее отдельный аттрактор.
Количественный анализ динамической системы сводится к определению аттракторов системы и сфер их притяжения, а также классификации их в рамках топологических характеристик. Результатом является динамическая картина всей системы, называемая фазовым портретом. Математические методы анализа фазовых портретов основаны на новаторских трудах Пуанкаре; впоследствии они были развиты и усовершенствованы американским топологом Стивеном Смейлом в начале 60-х19. Смейл использовал свой метод не только для анализа систем, представленных определенным набором нелинейных уравнений, но также для изучения того, как ведут себя эти системы при небольших изменениях в их уравнениях. По мере того как параметры уравнений медленно меняются, фазовый портрет — т. е. формы его аттракторов и сферы притяжения — как правило, претерпевает соответствующие плавные изменения, не изменяя своих основных характеристик. Смейл использовал термин «структурно устойчивый» для описания таких систем, в которых небольшие отклонения в уравнениях не изменяют основного характера фазового портрета.
Во многих нелинейных системах, однако, малые изменения в определенных параметрах могут обусловить серьезные изменения основных характеристик фазового портрета. Аттракторы могут исчезнуть или превратиться из одного в другой, могут также внезапно появиться новые аттракторы. Говорят, что такие системы структурно неустойчивы, и критические точки неустойчивости называют точками бифуркации («разветвления»), поскольку в эволюции системы именно в этих местах внезапно появляется «вилка», и система отклоняется в том или ином новом направлении. В математическом смысле, точки бифуркации отмечают внезапные изменения фазового портрета системы. В физическом смысле, они соответствуют точкам неустойчивости, в которых система резко изменяется, и неожиданно появляются новые формы упорядоченности. Как показал Пригожий, такие неустойчивости случаются только в открытых системах, далеких от равновесия20.
Поскольку типов аттракторов достаточно мало, то не много существует и различных типов бифуркации; следовательно, их можно классифицировать топологически, как и аттракторы. Одним из первых, кто в 70-е годы осуществил это, был французский математик Рене Том; он использовал термин катастрофы вместо бифуркации и определил семь элементарных катастроф21. В настоящее время математикам известно примерно в три раза больше типов бифуркаций. Ральф Эбрахам, профессор математики в Калифорнийском университете в Санта-Круз, вместе с художником-графиком Кристофером Шоу создали серию книг по визуальной математике без единого уравнения или формулы; авторы считают эти книги началом полной энциклопедии бифуркаций22.
Фрактальная геометрия
В то время как в течение 60-х и 70-х гг. ученые исследовали странные аттракторы, независимо от теории хаоса была изобретена фрактальная геометрия, давшая мощный математический язык для описания тонкой структуры хаотических аттракторов. Автором этого нового языка стал французский математик Бенуа Мандельбро. В конце 50-х Мандельбро начал изучать геометрию самых разнообразных нерегулярных естественных феноменов, а в 60-е годы он осознал, что у всех рассматриваемых им геометрических форм есть поразительные общие особенности. В последующие десять лет Мандельбро разрабатывал новый тип математики, чтобы описать и проанализировать эти особенности. Он ввел термин фрактал, характеризующий его изобретение, и опубликовал свои результаты в замечательной книге «Фрактальная геометрия природы». Книга имела огромное влияние на новое поколение математиков, развивавших теорию хаоса и другие разделы теории динамических систем23.
Недавно в одной из бесед Мандельбро пояснил, что фрактальная геометрия имеет дело с тем аспектом Природы, который каждому известен, но который никто еще не смог описать в формальных математических терминах24. Некоторые природные характеристики геометричны в традиционном смысле. Ствол дерева более или менее подобен цилиндру; полная Луна более или менее напоминает круглый диск; планеты движутся вокруг Солнца по более или менее эллиптическим траекториям. Однако это исключения, и Мандельбро напоминает нам:
Чаще всего природа в высшей степени сложна. Как описать облако? Облако — это не сфера... Оно похоже на мяч, но очень неупорядоченно. А гора? Гора — не конус... Если вы хотите говорить о горах, реках, молнии, геометрический школьный язык оказывается совершенно неадекватным.
И Мандельбро создал фрактальную геометрию — «язык, на котором можно говорить об облаках», — чтобы описывать и анализировать сложность нерегулярных форм в окружающем нас мире природы.
Наиболее поразительное свойство этих «фрактальных» форм заключается в том, что их характерные паттерны многократно повторяются на нисходящих уровнях так, что их части на любом уровне по форме напоминают целое. Мандельбро иллюстрирует это свойство самоподобия, отламывая кусочек цветной капусты и указывая на то, что сам по себе кусочек выглядит как маленький кочан цветной капусты25. Он продолжает демонстрацию, деля часть дальше, изымая еще один кусочек, который тоже выглядит как очень маленький кочан. Таким образом, каждая часть выглядит как целый овощ. Форма целого подобна самой себе на всех уровнях выбранного диапазона.
В природе встречается множество других примеров самоподобия. Камни в горах напоминают маленькие горы; ответвления молнии или края облаков снова и снова повторяют один и тот же паттерн; побережье моря можно делить на все более мелкие части, и в каждой из них будут проявляться подобные друг другу очертания береговой линии. Фотографии дельты реки, кроны дерева или ветвления кровеносных сосудов могут проявлять паттерны такого разительного сходства, что мы порой не можем отличить один от другого. Подобие образов совершенно различных масштабов было известно очень давно, но до Мандельбро никто не владел математическим языком для описания этого явления.
Когда в середине 70-х Мандельбро опубликовал свою новаторскую книгу, он еще сам не догадывался о связи между фрактальной геометрией и теорией хаоса, но ему и его коллегам-математикам не понадобилось много времени, чтобы обнаружить, что странные аттракторы могут служить изысканнейшими примерами фракталов. Если части их структуры увеличить, то обнаруживается многослойная субструктура, в которой вновь и вновь повторяются одни и те же паттерны. В связи с этим странные аттракторы стали определять как траектории в фазовом пространстве, в которых проявляются черты фрактальной геометрии.
Еще одна важная связь между теорией хаоса и фрактальной геометрией проявилась в переходе от количества к качеству. Как мы видели, невозможно предсказать значения переменных хаотической системы в определенный момент времени, но можно предсказать качественные особенности поведения системы. Точно так же, невозможно вычислить длину или площадь фрактальной формы, однако можно — качественным способом — определить степень ее изрезанности.
Мандельбро подчеркнул эту существенную особенность фрактальных форм, задав провоцирующий вопрос: какова протяженность побережья Британии? Он показал, что, поскольку измеряемую длину можно растягивать до бесконечности, переходя ко все более мелкому масштабу, на этот вопрос нет однозначного ответа. Зато можно определить число в диапазоне от 1 до 2, которое характеризует изрезанность побережья. Для британского побережья это число равно около 1,58; для более изрезанного норвежского берега оно близко к 1,7027.
Поскольку можно показать, что это число имеет определенные свойства размерности, Мандельбро назвал его фрактальной размерностью. Мы можем понять эту идею интуитивно, зная, что извилистая линия занимает больше пространства на плоскости, чем одномерная гладкая линия, но меньше, чем сама двухмерная плоскость. Чем больше изрезана линия, тем ближе к числу 2 ее фрактальная размерность. Подобным же образом, скомканный лист бумаги занимает больше пространства, чем плоскость, но меньше, чем сфера. Таким образом, чем плотнее скомкана бумага, тем ближе к числу 3 будет ее фрактальная размерность.
Концепция фрактальной размерности, изначально появившаяся как чисто абстрактная математическая идея, превратилась со временем в мощный инструмент анализа сложности фрактальных форм, поскольку замечательно соответствует нашему жизненному опыту. Чем более изрезаны очертания молнии или границы облаков, чем менее сглажены формы побережий или гор, тем выше их фрактальные размерности. Чтобы смоделировать фрактальные формы, встречающиеся в природе, можно сконструировать геометрические фигуры, обладающие точным самоподобием. Основным методом для построения таких математических фракталов служит итерация, т. е. многократное повторение определенной геометрической операции. Процесс итерации, который привел нас к преобразованию пекаря — математической операции, лежащей в основе странных аттракторов, — оказался, таким образом, главной математической особенностью, объединяющей теорию хаоса с фрактальной геометрией.
Одной из простейших фрактальных форм, производимых итерацией, является так называемая кривая Коха, или «кривая снежинки»27. Геометрическая операция заключается в том, чтобы разбить отрезок линии на три равные части и затем заменить центральную секцию двумя сторонами равностороннего треугольника, как показано на рис. 6-12. Повторение этой операции во все более мелких масштабах приводит к появлению кружевной снежинки (рис. 6-13). Как и в случае с изрезанной береговой линией, кривая Коха становится бесконечно длинной, если итерация продолжается бесконечно. В сущности, кривую Коха можно рассматривать как очень грубую модель береговой линии (рис. 6-14).
Рис. 6-14. Моделирование береговой линии с помощью кривой Коха
Математика сложных систем
С помощью компьютеров простые геометрические итерации можно применять тысячи раз в различных масштабах, производя так называемые фрактальные подделки — компьютерные модели растений, деревьев, гор, береговых линий и т. п., обладающие поразительным сходством с реальными формами, которые встречаются в природе. На рис. 6-15 приведен пример такой подделки. Производя итерацию над простым рисунком веточки в различных масштабах, удалось получить красивое и сложное изображение папоротника.
Рис. 6-15. Фрактальная подделка папоротника. Из Garcia (1991)
Этот новый математический аппарат позволил ученым строить точные модели разнообразных нерегулярных естественных форм. Занимаясь этим моделированием, они повсеместно обнаруживали присутствие фракталов. Фрактальные паттерны облаков, которые изначально воодушевили Мандельбро на поиски нового математического языка, вероятно, самые изумительные. Их самоподобие охватывает семь порядков величин, а это означает, что если границу облака увеличить в 10 000 000 раз, она будет иметь все ту же знакомую форму.
Комплексные числа
Вершиной фрактальной геометрии стало открытие Мандельбро математической структуры, которая обладает ошеломляющей сложностью и все же может быть воспроизведена с помощью очень простой итеративной процедуры. Чтобы понять эту поразительную фрактальную фигуру, известную как множество Мандельбро, необходимо сначала ознакомиться с одним из важнейших математических понятий — комплексными числами.
Открытие комплексных чисел стало восхитительной главой в истории математики28. Когда в средние века возникла алгебра и математики принялись исследовать все виды уравнений и классифицировать их решения, они вскоре столкнулись с задачами, не имевшими решения в рамках множества известных им чисел. В частности, уравнения типа х + 5 = 3 заставили их расширить понятие числа до отрицательных чисел, так чтобы решение могло быть записано как х = -2. В дальнейшем так называемые действительные числа — положительные и отрицательные целые числа, дроби и иррациональные числа (например, квадратные корни или знаменитое число п) — стали представлять как точки на единой плотно населенной числовой оси (рис. 6-16).
-5/2 1/2 π
-4 -3 -2 -1 0 1 2 3 4
Рис. 6-16 Числовая ось
С таким расширением понятия числа все алгебраические уравнения, в принципе, могли быть решены — за исключением тех, где фигурировали квадратные корни отрицательных чисел. Уравнение х2 = 4 имеет два решения: х = 2 и х = -2; однако для х2 = -4, по всей видимости, не должно быть решения, поскольку ни +2, ни - 2 при возведении в квадрат не дадут -4.
Древние индийские и арабские алгебраисты постоянно встречались с такими уравнениями, но отказывались даже записывать выражения типа , считая их абсолютно бессмысленными. И только в XVI веке квадратные корни отрицательных чисел стали появляться в алгебраических текстах, но и тогда авторы спешили пояснить, что такие выражения на самом деле ничего не означают.
Декарт называл квадратный корень отрицательного числа «мнимым числом» и был уверен, что появление таких мнимых чисел в расчетах означает, что проблема неразрешима. Другие математики использовали термины «фиктивные», «фальшивые» или «невозможные» для обозначения величин, которые сегодня мы, с легкой руки Декарта, все еще называем мнимыми числами.
Поскольку квадратный корень отрицательного числа не может быть помещен ни в одной точке числовой оси, математики, вплоть до XIX столетия, не могли наделить эти величины никаким реальным смыслом. Великий Лейбниц, изобретатель дифференциального исчисления, приписывал выражению мистические свойства, видя в нем проявление Божественного Духа и называя его «этой амфибией между бытием и небытием»29. Столетие спустя Леонард Эйлер, самый плодотворный математик всех времен, выразил ту же мысль в своей «Алгебре» словами хотя и менее поэтичными, но все же содержащими отголосок Чуда:
Следовательно, все такие выражения, как , и т. п., есть невозможные, или мнимые числа, поскольку представляют корни отрицательных величин; по поводу таких чисел мы можем достоверно утверждать, что они ни ничто, ни нечто большее, чем ничто, ни нечто меньшее, чем ничто, из чего неизбежно следует, что они мнимы, или невозможны30.
В XIX веке другой математический гений, Карл Фридрих Гаусс, окончательно и твердо провозгласил, что «этим мнимым сущностям может быть приписано объективное бытие»31. Гаусс, конечно, понимал, что мнимым числам не найдется места на числовой оси, а поэтому он попросту поместил их на перпендикулярную ось, которую провел через нулевую точку основной оси, построив таким образом декартову систему координат. В этой системе все действительные числа располагаются на действительной оси, а все мнимые числа — на мнимой оси (рис. 6-17 называется мнимой единицей и обозначается символом i. А поскольку любой квадратный корень отрицательного числа всегда может быть представлен как = = i , то все мнимые числа можно расположить на мнимой оси как кратные »'.
Таким остроумным способом Гаусс создал прибежище не только для мнимых чисел, но и для всех возможных комбинаций действительных и мнимых чисел, например, (2 + i), (3 — i ) и т. п. Такие комбинации получили название комплексных чисел; они представлены точками на плоскости, которая называется комплексной плоскостью и образована действительной и мнимой осями. В общем случае любое комплексное число можно записать в виде
z = х + iy,
где х — действительная часть, а у — мнимая часть.
Введя это определение, Гаусс создал специальную алгебру комплексных чисел и разработал множество фундаментальных идей в области функций комплексного переменного. В конце концов это привело к появлению целого раздела математики, известного как комплексный анализ, который выделяется огромным диапазоном применений в самых разнообразных областях науки.
Рис. 6-17. Комплексная плоскость