Социология и этика биологического познания

В ходе рассуждений и дискуссий, ведущихся в среде ученых о допустимости и недопустимости по этическим и гуманистическим соображениям:

■ медицинских экспериментов на человеке;

■ этических принципов генетического контроля;

■ генно-инженерных работ;

■ ряда психологических исследований, содержащих
можность манипулирования личностью, —

высказывается мысль о том, чтобы признать полный нейтралитет науки. Западные ученые при этом делают акцент на саморегулирование науки, которое ограничивается уровнем моральных оценок и обязательств и исключает «внешний контроль», всякого рода государственные и общественные регламентации научных исследований, особенно в дискуссиях по этическим аспектам проблем, связанных с генной инженерией, когда речь идет о моратории на ряд исследований в этой области. Такой подход утверждает некоторый идеал для науки как ее цель.

Однако этика науки не может исходить из дилеммы: наука или мораль. Она должна органически соединять их. Но может ли этика науки быть самодостаточной? Может ли она выступать главным регулятором научного познания? И хотя этика науки утверждается как жизненно необходимое условие функционирования гуманистически ориентированного научного познания, наука не может регулироваться лишь на этическом уровне, она не способна к этическому самоконтролю. Этические принципы науки не стоит рассматривать изолированно от социальных факторов, которые, в свою очередь, не могут отрываться от общих этических и гуманистических ценностей человечества. Поэтому точнее будет говорить о социологии и этике науки как едином комплексе.

Наука и общество приходят к социально-этическому и гуманистическому регулированию науки как к жизненной необходимости. Такое регулирование может стать новой, гуманистической основой нового, современного этапа развития науки. Предложения и действия в области генной инженерии должны находиться под действенным контролем общества. Социальная ответственность ученого и свобода научного поиска не исключают друг друга.

В самое «тело» науки проникают такие компоненты, как теория, социология и этика биологического познания. Они становится новым необходимым атрибутом биологического мышления, определяют прогресс биологического познания и всего комплекса наук, позволяющих изучать человека.

382

ГЕНЕТИКА

Генетика(от греч. genesis — происхождение) — это наука о законах наследственности и изменчивости организмов и методах управления ими. Основы современной генетики были заложены Г. Менделем (1822— 1884) — монахом-августинцем, жившим в австрийском городе Брюн-не (ныне Брно). Примерно в 1856 г. он начал проводить опыты с различными сортами гороха, чтобы выяснить, какие индивидуальные признаки организма передаются по наследству. Доминирование одного признака над другим — это обычное, но не универсальное явление. В некоторых случаях встречается неполное доминирование. Бывают такие случаи, когда в потомстве проявляются признаки обоих родителей. Такая ситуации называется кодоминированием.Например, у людей с группой крови АВ одинаково выражены признаки и особенности группы как А, так и В, унаследованные ими от обоих родителей.

Законы Менделя

В 1866 г. Г. Мендель открыл законы дискретной наследственности, выражающие распределение в потомстве наследственных факторов, названных впоследствии генами.

Для объяснения результатов своих экспериментов Мендель предложил гипотезу: альтернативные признаки определяются факторами — генами, которые передаются по наследству. Каждый фактор может находиться в одной из альтернативных форм, ответственных за то или иное проявление признака. Эксперименты Менделя определяли наследование альтернативных проявлений одного и того же признака. Что происходит, когда одновременно рассматривают два альтернативных признака?

Мендель сформулировал следующие законы:

1.Закон единообразия гибридов первого поколения.

2. Закон независимого расщепления гибридов второго поколения, согласно которому гены, определяющие различные признаки, наследуются независимо друг от друга (впоследствии оказалось, что этот закон справедлив только в отношении генов, находящихся в раз-

ных хромосомах). Мендель заранее предусмотрел две возможности:

■ признаки, наследуемые от одного родителя, передаются совместно;

■ признаки передаются потомству независимо один от другого.

В основе передачи наследственных признаков всего живого (растений, животных и человека) лежат прежде всего законы наследования, открытые Г. Менделем. Они позволили сформулировать хромосомную теорию наследственности, согласно которой преемственность свойств в ряду поколений определяется преемственностью их хромосом, находящихся в ядре клеток и заключающих в себе всю генетическую информацию.

Развитие генетики

В 1909 г. В. Иогансон (1857—1927) ввел важное разграничение между фенотипоми генотипом. Фенотип— это совокупность всех внешних наблюдаемых нами признаков организма: морфологических, физиологических, биохимических, гистологических, анатомических, поведенческих и т.п. Генотипомназывается передающаяся по наследству генетическая основа всех этих признаков (генетическая конституция особи). Генотип — это совокупность всех генов одного организма. Генотип — это не механическая сумма генов, это система взаимодействующих генов. На протяжении жизни организма его фенотипможет изменяться, однако генотип остается неизменным.

В 1902 г. два исследователя — У.С. Саттон в США и Т. Боверн в Германии — независимо друг от друга высказали предположение, что гены находятся в хромосомах. Эта концепция получила название хромосомной теории наследственности.Две хромосомы, образующие одну пару, называются гомологическими,принадлежащие к разным парам — негомогенными хромосомами.

Посовременным данным науки, хромосомы ядерного вещества представляют собой гигантские полимерные молекулы, состоящие из нитей нуклеиновых кислот и небольшого количества белка. Каждая пара хромосом имеет определенный набор генов, контролирующих появление того или иного признака. Гены являются носителями наследственности. Их существование, располо-

384

жение в хромосомах определяются посредством изучения распределения признаков в потомстве от скрещивания особей с альтернативными проявлениями этих признаков.

В 10-х гг. XX в. Т.Х. Морган (1866-1945) создал школу. Работы Моргана и его школы (Г. Дж. Меллер, А.Г. Стертевант и др.) обосновали хромосомную теорию наследственности. Установление закономерности расположения генов в хромосомах способствовало выяснению цитологических механизмов законов Менделя и разработке теоретических основ теории естественного отбора. В 1933 г. Т.Х. Морган был удостоен Нобелевской премии за эти разработки.

В 20-е и 30-е гг. важную роль в развитии генетики сыграли работы Н.И. Вавилова, Н.К. Кольцова, А.С. Се-ребровского и других советских ученых.

Изучение явлений наследственности на клеточном уровне позволило установить взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления и созревания половых клеток. Это был фактически второй этап развития генетики.

Становление этой науки в нашей стране пережило сложный период. Долгое время генетика отвергалась официальной наукой. «Менделизм-морганизм» был провозглашен в СССР лжеучением, последователи его преследовались. Затем наступило время, когда генетику наконец-то признали, приняв основные положения одного из самых удивительных учений, продвигающих вперед человеческую цивилизацию.

В 40-х — начале 50-х гг. была выяснена химическая природа гена. Геныпредставляют собой молекулы дезок-сирибонуклеиновой кислоты (ДНК)— высокополимерного природного соединения, содержащегося в ядрах клеток живых организмов. ДНК— носитель генетической информации. Расшифровка структуры ДНК и механизма ее самоудвоения позволила установить, что все разнообразие живого мира кодируется на нитях ДНК, посредством чего записывается информация о последовательности аминокислот в белке. Всего известно 20 аминокислот, различные вариации из которых и определяют все разнообразие белков в живой материи.

Одним из наиболее важных открытий всех времен было установление в 1953 г. Д, Уотсоном и Ф. Криком модели пространственной структуры ДНК— двойной спирали:молекулы ДНК имеют двухнитчатую структуру и обе параллельно идущие нити свернуты спиралью. Впоследствии это открытие было тщательно проверено, подтверждено (молекулы ДНК ученые сумели увидеть в мощные электронные микроскопы с увеличением в 150-200 тысяч раз в отличие от хромосом, строение которых можно рассмотреть в обычный микроскоп) и позволило объяснить многие свойства ДНК и биологические функции. В 1962 г. за эти исследования им была присуждена Нобелевская премия.

Генетика включает ряд отраслей, втом числе по объектам исследования:

■ генетика микроорганизмов;

■ генетика растений;

■ генетика животных;

■ генетика человека.

Показав, что наследственность и изменчивость основываются на преемственности и видоизменении сложных внутриклеточных структур, генетика внесла важный вклад в познание картины мира и доказательство взаимосвязи физико-химических и биологических форм организации материи. Генетика имеет большое значение для медицины, тесно связана с эволюционным учением, цитологией, молекулярной биологией, селекцией.

Основные понятия и термины современной генетики

Генетика— это наука, изучающая закономерности и материальные основы наследственности и изменчивости организма. Как уже рассматривалось (см. ТЕМУ 13.1.1. и 13.1.2), наследственность — это свойство одного поколения передавать другому признаки строения, физиологические свойства и специфический характер индивидуального развития. Изменчивость— это изменение наследственных задатков, вариабельность их проявления в процессе развития организма при взаимодействии с внешней средой. Новые свойства организма появляются только благодаря изменчивости, но она лишь тогда играет роль в эволюции, когда проявление изменчивости сохраняется в последующих поколениях, т.е. наследуется.

386

19.2.3.1. Механизм наследственности

Клетки, через которые осуществляется преемственность поколений, — специализированные половыепри половом размножении и неспециализированные (соматические)клетки тела при бесполом несут в себе не сами признаки и свойства будущих организмов, а только задатки их развития. Эти задатки и являются генами. Ген— это участок молекулы ДНК (или участок хромосомы), определяющий возможность развития отдельного элементарного признака. Молекула ДНК состоит из двух поли-нуклеотидных цепей, закрученных одна вокруг другой в спираль. Цепи построены из большого числа мономеров 4 типов — нуклеотидов, специфичность которых определяется одним из 4 азотистых оснований. Сочетание трех рядом стоящих нуклеотидов в цепи ДНК составляют генетический код.ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ.

Генпредставляет собой группу рядом лежащих нуклеотидов, которыми закодирован один белок, определяющий один признак. Число генов очень велико: у человека их десятки тысяч. Один и тот же ген может оказывать влияние на развитие ряда признаков, так же, как и на формирование одного признака могут оказывать влияние несколько генов.

Каждому виду растений и животных свойствен свой количественный набор хромосом. У всех организмов одного и того же вида каждый ген расположен в одном и том же месте строго определенной хромосомы. Каждая клетка человеческого тела содержит 46 хромосом. Почти все хромосомы в наборе представлены парами, в каждую из 22-х пар входят одинаковые по величине идентичные хромосомы, а 23-я пара является половыми хромосомами: у женщин она состоит из одинаковых хромосом XX, а у мужчин — XY. В галоидном наборе хромосом имеется только один ген, ответственный за развитие данного признака. В диллоидном наборе хромосом (в соматических клетках) содержатся две гомологичные хромосомы и соответственно два гена, определяющие развитие одного какого-то признака.

Генетическая информация закодирована в последовательности азотистых оснований, содержащихся в молекуле ДНК. Азотистые основания можно рассматривать в качестве «букв» генетического алфавита. Последовательность оснований образует «слова». Гены— это своего рода «предложения», записанные на генетическом языке. Соответственно генетическое содержимое организма представляет собой как бы «книгу», составленную из генетических предложений. В отличие от строго определенного расположения азотистых оснований в двух комплементарных частях, нет никаких ограничений относительно того, в каком порядке должны следовать основания друг за другом вдоль одной цепи. Благодаря этому существует практически неограниченное число различных молекул ДНК. Число возможных генетических сообщений, кодируемых достаточно длинными цепями ДНК, практически не ограничено.

За воспроизведение в поколениях растений, животных и человека наследственных свойств ответственны 3 эволюционно закрепленных универсальных процесса:

■ размножение обычных (соматических) клеток — митоз — простое деление, перед которым количество хромосом в клетке удваивается путем самовоспроизведения;

■ размножение половых клеток — мейоз;

■ оплодотворение.

Гены управляют развитием и обменом веществ организма. Наследственная передача признаков от родителей потомству — консервативный процесс, но эта консервативность не является абсолютной, так как иначе была бы невозможна эволюция. Информация, закодированная в нуклеотидной последовательности ДНК, обычно в точности воспроизводится в процессе репликации.

Каждый новорожденный несет в себе комплекс генов не только своих родителей, но и отдаленных предков, т.е. свой, только ему присущий богатейший наследственный фонд или наследственно предопределенную биологическую программу, благодаря которой и возникают его индивидуальные качества. Эта программа закономерно и гармонично претворяется в жизнь, если:

■ в основе биологических процессов лежат достаточно
качественные наследственные факторы;

388

■ внешняя среда обеспечивает растущий организм всем необходимым для реализации наследственного начала. Приобретенные в жизни навыки и свойства не передаются по наследству, однако каждый родившийся ребенок обладает громадным арсеналом задатков, развитие которых зависит от:

■ условий воспитания и обучения;

■ социальной структуры общества;

■ забот и усилий родителей;

■ желаний самого ребенка.

Внешней средой для ребенка являются прежде всего те условия, которые создадут его родители или окружающие его люди, различные климатические, геофизические и другие факторы, воздействие которых может существенно изменить характер наследственной информации. И она может реализоваться частично или полностью.

19.2.3.2. Формы изменчивости

Как уже отмечалось, весь комплекс наследственных свойств организма называется генотипом,а комплекс признаков, сформировавшихся во время взаимодействия генотипа и факторов внешней среды, — фенотипом.В соответствии с этим в генетике различают наследственнуюи ненаследственную изменчивость. Ненаследственнаясвязана с изменением фенотипа, наследственная — генотипа. Генотипическая изменчивостьзатрагивает генотип и подразделяется на несколько групп. Рассмотрим две из них:

■ мутационную;

■ комбинативную.

Мутациейназывается изменение структуры или количества ДНК данного организма. Мутации приводят к изменениям генотипа. Если мутации затрагивают половые клетки, то они передаются следующим поколениям, а если мутации возникают в соматических клетках, то они не передаются следующим поколениям. Генные мутации затрагивают структуру самого гена: изменяются различные по длине участки ДНК. Большинство мутаций, с которыми связана эволюция органического мира и селекция, — генная мутация.

В особую группу можно выделить ряд процессов, приводящих к возникновению комбинативной изменчивости.Она включает:

■ случайное расхождение хромосом;

■ случайное сочетание хромосом при оплодотворении;

■ рекомбинацию генов.

Обычно сами наследственные гены при этом не изменяются, но новые их сочетания между собой приводят к появлению организмов с новым фенотипом.

19.2.3.3. Мутации

Главнейшая особенность природных популяций, как показали эксперименты, — это генетическая гетерогенность(разнородность). Она поддерживается за счет мутаций и процесса рекомбинаций. Генетическая гетерогенностьпозволяет популяции использовать для приспособления не только вновь возникающие наследственные изменения, но и те, которые возникли очень давно и существуют в популяции в скрытом виде.

Любые мутации имеют неопределенный, случайный характер по отношению к вызывающим их изменениям внешней среды. Наибольшие шансы на выживание имеют мутации малого масштаба, не нарушающие существенно интеграции целостного организма и не производящие значительных изменений в фенотипе. Крупные мутации почти всегда имеют летальный исход. В результате сколько-нибудь существенные эволюционные преобразования организмов не могут быть достигнуты посредством одной мутации, а достигаются серией малых мутаций. Таким образом, нелетальные и не снижающие значительно жизнедеятельность организма мутации входят в состав генофонда. Мутации позволяют выживать виду при значительных изменениях окружающей среды, когда необходима перестройка нормы реакции. Мутации — это элементарный мутационный материал.

Если численность какой-нибудь популяции резко идет на убыль, а затем следует новый подъем численности, то при этом некоторые ранее присутствовавшие в малых концентрациях мутации могут совершенно исчезнуть из популяции, а концентрация других может существенно повыситься. Это явление называется дрейф генов.

Темп возникновения мутаций у различных организмов различен. Темп мутаций у бактерий и других микроорганизмов обычно ниже, чем у многоклеточных. Новые мутации, хотя и довольно редко, но постоянно появляются в природе, так как существует множество особей каждого вида.

390

Воздействие извне радиоактивными, ультрафиолетовыми лучами, а также химическими веществами может значительно изменить «запись» наследственной информации. Происходит нарушение генетического кода и вместо нормального развития живого организма, предначертанного природой, наступает отступление от нормы — мутация.Количество мутаций среди животных чрезвычайно велико в связи с радиационно-химическим заражением окружающей среды. Необычайно велика волна появления животных-чудовищ после аварии на Чернобыльской АЭС.

Сегодня наука разгадала причины появления мутантов, но повлиять на управление этим процессом, чтобы предотвратить его, не в силах. Более того, современная наука, техника, производство создают все новые условия для ускорения процесса мутации. И если не остановить рост радиационно-химического загрязнения среды, последующее влияние его на будущее скажется на многих поколениях.

Наши рекомендации