The turn and slip indicator
It is really two instruments in one -- the needle (gyroscopic turn indicator) shows the direction and rate of turn and the ball (bank indicator) shows the quality of the turn. The ball is moved from side to side by the centrifugal force and gravity acting laterally on the aircraft.
The turn needle is operated by semi-rigidly mounted gyro inside the instrument case. Turning the aircraft causes the gyro to process, tilting the gyro and deflecting the needle linked to it. The rotor is designed to right itself when no turning forces are sensed.
The artificial horizon (the attitude indicator)
An artificial horizon employs a vertical axis gyro having freedom in all three planes and indicates the aircraft's attitude in pitch and roll.
Artificial horizon
The gyro axis is maintained vertically with reference to the centre of the earth so that a bar across and at 90 degrees to the rotor axis indicates the horizon. In flight an aircraft rolls and pitches about the gyro axis which remains rigid and the indications are instantaneous.
Указатель пространственного положения
1. Индикатор работы прибора
2. Указатель крена
3. Курсовой директор
4. Шкала крена
5. Индикатор ВПР
6. Указатель глиссады
7. Шкала глиссады
8. Командная планка авиагоризонта
9. Символ самолета
10. Шкала положения
11. Символ ВПП
12. Масштаб ВПП
13. Указатель скорости разворота
14. Шкала угловой скорости
15. Указатель скольжения
16. Кнопка проверки
17. Шкала отклонения скорости
18. Указатель отклонения скорости
19. Указатель горизонтального положения
20. Флаг неисправности канала скорости
21. Флаг неисправности гидросистемы
22. Флаг неисправности канала разворота
23. Флаг неисправности канала глиссады
24. Флаг неисправности компьютера
25. Флаг неисправности индикации ВПП
Комплексный навигационный прибор
1. Указатель ДМЕ N 1
2. Курсовая планка
3. Индекс заданного курса
4. Индикатор режима
5. Указатель ДМЕ N 2
6. Индекс текущего курса
7. Указатель пролета маяка ДМЕ/ВОР
8. Указатель отклонения от курса
9. Указатель полета НА/ОТ ВОР
10. Указатель положения глиссады
11. Символ самолета
12. Указатель курса
13. Задатчик курса
14. Азимутальная шкала
15. Управление яркостью
16. Обратный курс
17. Задатчик курса
18. Указатель курса
19. Ограничитель шкалы глиссады
20. Индикатор источника данных
21. Индикатор режима работы
22. Индикатор ДМЕ
23. Флаг неисправности канала курса
24. Флаг недостоверности навигационных данных
25. Флаг неисправности канала глиссады
26. Шкала индикатора глиссады
The control panel of a Concorde is shown.
Control panel of a Concorde:
1 - Third crew-member oxygen, 2- Pilot oxygen, 3- Angle of attack/acceleration, 4- Stall warning, 5- Ice warnings, 6- Warnings, 7- Autopilot-state, 8- Brake pressure, 9- Emergency brakes, 10- Marker switch, 11- Marker, 12- Stand-by horizon, 13- Engine h-p speed, 14- Turbine temperatures, 15- Thrust revers signals, 16- Reheat signal, 17- Engine Thrusts, 18- Warning flasher, 19- Control surface angles, 20- Centre of gravity position, 21- Digital clock, 22- Cabin altitude, 23- Outside air temperature. 24- VOR/DME/ADF control. 25- Radio altitude, 26-Alrimeter, 27- Horizon, 28- Course control/display, 29- Yaw, 30- 3-axte trim, 31- Landing gear, 32- Machmeter, 33- Air-speed, 34- Moving map, 35- Radar, 36- Radar control, 37- Brake test, 38- Stand-by altimeter, 39- Stand-by Mach/air speed
The flight control system consists of a flight computer, autopilot system, cockpit displays and the yaw damper system.
The flight computer receives information from navigation systems, attitude gyro and other gyros, supplies pitch and bank steering bars of the attitude director indicator.
The autopilot system positions the aircraft elevator and aileron control surface in responce to flight computer commands or pilot's manual commands.
The yaw damper system senses yaw acceleration and generates a corrective rudder command.
The attitude director indicator (ADI) is the principal scan instrument of the flight director system and provides the following basic indicators:
1) tum-and-slip indicator.
2) attitude gyro (pitch and bank indicators).
3) glide slope indicator.
4) localizer indicator.
5) radar altimeter.
6) attitude warning light.
7) speed deviation indicator.
Приборная доска самолета Конкорд
1. Кислородное оборудование
2. Кислородное оборудование
3. Угол атаки/перегрузка
4. Предупреждение сваливания
5. Индикация обледенения
6. Табло сигнализации
7. Индикатор режима автопилота
8. Давление тормозной системы
9. Аварийные тормоза
10. Выключатель маркера
11. Маркер
12. Резервный авиагоризонт
13. Обороты двигателя
14. Температура турбины
15. Сигнализация реверса
16. Сигнализация перегрева
17. Тяга двигателя
18. Мигающая сигнализация
19. Углы отклонения рулей
20. Положение центра тяжести
21. Цифровые часы
22. Высота в кабине
23. Наружная температура
24. Управление ВОР, ДМЕ, АРК
25. Радиовысотомер
26. Высотомер
27. Авиагоризонт
28. Курсовая система
29. Скольжение, снос
30. Трехстепенной триммер
31. Шасси
32. Махомер
33. Указатель скорости
34. Подвижная карта
35. Радиолокатор
36. Управление радиолокатором
37. Контроль тормозов
38. Резервный высотомер
39. Резервный указатель скорости, числа Маха
Aircraft serviceability
Maintenance is most important pre-flight activity and carried out by aircraft maintenance engineers licensed by aviation authorities. Satisfactory maintenance originates with the manufacturer; a new aircraft will be granted a Certificate of Airworthiness by the relevant national authorities. Manufacturers complite maintenance manuals and Service Bulletens to advise on the maintenance of aircraft, and these are updated.
The airlines must make satisfactory provisions for such matters as suitable hangars and workshops, tools and test equipment, quality and reliability control, and materials and training. Enormous hangars are needed to house the wide-bodied airliners. The docks, huge stagings built around the aircraft so that every part is accessible for inspection and repair, are equipped with working platforms at many levels, built-in lighting, and lifts and conveyors for personnel, tools e.t.
All aircraft are maintained in accordance with a maintenance schedule or programme. The schedule stipulates fixed times, usually related to the aircraft's flying hours, for functioning checks and inspections. Additionally engines and many other components have a flying life limit after which they have to be removed and overhauled. Different airlines may maintain the same aircraft type according to quite different check cycles.
Conditioning monitoring, or continuous maintenance is a system under which an aircraft, its components are analyzed from pilot's reports of technical delays and unscheduled engine shut-downs, and inspected at predetermined intervals to establish «alert levels» for future repair and replacement of parts, eliminating all necessary removal.
Non-destructive testing of vital components using X-rays, ultra-sonic and magnetic particle methods detects fatigue-induced cracks before they become serious.
Radar
The principles of radar are not new: in fact, some early experiments were made back in 1880s. In 1904 a German
engineer had invented, as he explained, a «radio-echo collision prevention device».
The word «radar» was originally derived from the descriptive phrase «Radio Detection and Ranging». The application of radar in the air traffic control system consists of two basic designs. The initial type of radar, called primary radar, began to be used in most parts of the world in the early 1950s. Another form of radar, secondary surveillance radar (SSR) is used for advanced air traffic control. When the word «radar» is used alone, it usually includes both primary and secondary radar.
There are three additional forms associated with primary and secondary radar which are interest;
Radar Echo — the visual indication on display of a signal reflected from an object.
Radar Responce - the visual indication on display of a radar signal transmitted from an objest in reply to an interrogation.
Radar Blip - the collective term meaning either echo or responce.
Primary radar
In primary radar a beam of individual pulses of energy is transmitted from the ground equipment at the rate of approximately 1200 per second, while the transmitting antenna rotates at a speed of 3 to б rpm for long — range systems, and as fast as 60 rpm for airport coverage. These pulses hit the aircraft from 16 to 34 times each scan. An aircraft in the path of this radar beam will reflect back some of the pulses which are picked up by a receiver. This reflected energy produces a bright «echo» or «target» on a cathode ray tube.
Principle of radar reflection