Уровень механизации погрузочно-разгрузочных работ
(в % к общему объему работ)
Годы | |||||
Уровень, % |
Уровень механизации за период 1985–2005 гг. повысился на 58 пунктов (89–31). Пунктомв статистике называется разность в 1 процент. Уровень интенсивности этого роста определяется так: 89% : 31% = 2,87 (287 – 100 = 187%) или эту величину можно получить путем отнесения разности в пунктах к тому уровню, с которым производится сравнение: 58 : 31 = 1,87%.
Для правильного построения рядов динамики необходимо соблюдать ряд требований:
1) Все показатели ряда динамики должны быть достоверными, точными, научно обоснованными.
2) Все показатели ряда должны быть сопоставимы. Основным условием сопоставимости статистических показателей является одинаковая методология их определения.
3) Показатели ряда динамики должны быть сопоставимы по территории, к которой они относятся.
4) Показатели ряда динамики должны быть сопоставимы во времени, т.е. они должны быть исчислены за одни и те же периоды времени или же на одну и ту же дату.
5) Все показатели ряда должны быть приведены в одних и тех же единицах измерения.
6) Должна соблюдаться сопоставимость цен.
При изучении рядов динамики статистика решает ряд задач:
1) измеряет абсолютную и относительную скорость роста либо снижения уровня за отдельные промежутки времени;
2) дает обобщающие характеристики уровня и скорости его изменения за тот или иной период;
3) выявляет и численно характеризует основные тенденции развития явления на отдельных этапах;
4) дает сравнительную числовую характеристику развития данного явления в разных регионах или на разных этапах;
5) выявляет факторы, обуславливающие изменение изучаемого явления во времени;
6) делает прогнозы развития явления в будущем.
Для сравнения между собой отдельных уровней ряда динамики рассчитываются следующие показатели: абсолютные приросты, темпы роста (коэффициенты роста), темпы прироста и абсолютное значение одного процента прироста. Расчет этих показателей основан на сравнении между собой уровней ряда динамики. При этом уровень, с которым производится сравнение, может быть базисным или цепным.
Абсолютный прирост показывает, насколько в абсолютном выражении уровень отчетного периода больше или меньше уровня базисного периода. Абсолютный прирост рассчитывается как с постоянной, так и переменной базой сравнения. Абсолютный прирост за единицу времени измеряет абсолютную скорость роста или снижения уровня.
(переменная база сравнения);
(постоянная база сравнения);
– уровень ряда, принятого за базу сравнения.
Коэффициент роста, темп прироста и абсолютное значение 1% прироста характеризуют интенсивность процесса роста.
Коэффициент роста показывает, во сколько раз уровень отчетного периода больше или меньше уровня базисного и рассчитывается как с переменной, так и с постоянной базой сравнения.
С переменной базой сравнения , с постоянной базой сравнения . Коэффициент роста может быть больше единицы, меньше единицы, равен единице. Коэффициенты роста, выраженные в процентах, носят название темпов роста.
,
.
Ели коэффициенты роста, рассчитанные с переменной базой сравнения, характеризуют изменение явления от периода к периоду, то коэффициенты роста с постоянной базой – непрерывную линию развития.
Темп приростапоказывает, на сколько процентов уровень отчетного периода больше или меньше уровня базисного.
При переменной базе сравнения:
или или .
При постоянной базе сравнения:
или .
Абсолютное значение 1% прироста (А1%):
или .
Между показателями динамики, вычисленными с постоянной и переменной базой, существует определенная связь.
Сумма абсолютных приростов с переменной базой дает общий прирост за исследуемый период:
,
где n – число уровней динамики ряда.
Например, имеются данные об уровне явления за четыре периода: y1, y2, y3, y4.
Цепные абсолютные приросты:
Взаимосвязь между базисными и цепными коэффициентами роста такова: произведение последовательных цепных коэффициентов роста равно базисному коэффициенту роста, а частное от деления последующего базисного коэффициента роста на предыдущий равно соответствующему цепному коэффициенту роста.
Цепные коэффициенты роста:
;
,
где − базисные коэффициенты роста.
При сопоставлении динамики развития двух явлений можно использовать показатель, предоставляющий собой отношение темпов роста за одинаковые отрезки времени по двум динамическим рядам. Этот показатель называют коэффициентом опережения.
,
где , – соответствующие уровни сравниваемых динамических рядов. С помощью этого коэффициента могут сравниваться динамические ряды одинакового содержания, но относящиеся к разным территориям или к различным организациям или ряды разного содержания, характеризующие один и тот же объект.
Для получения обобщающей характеристики интенсивности развития явления за длительный период исчисляют средние показатели динамики.
Средний уровень ряда динамики исчисляется различно в зависимости от вида ряда. Для интервального ряда он рассчитывается по формуле средней арифметической простой:
,
где п – число уровней ряда.
Для моментного ряда с равными интервалами по формуле средней хронологической простой:
.
Для моментного ряда с неравными интервалами по формуле средней хронологической взвешенной:
,
где t – промежутки времени.
Все остальные средние показатели для интервальных и моментных рядов динамики исчисляются одинаково.
Средний абсолютный прирост ( ) определяется по формуле средней арифметической из абсолютных приростов, исчисленных с переменной базой:
или ,
где , – конечный и начальный уровни динамического ряда.
Средний коэффициент роста определяется по формуле средней геометрической из коэффициента роста за отдельные периоды:
или ,
где n – число уровней ряда.
Средний темп роста представляет собой средний коэффициент роста, выраженный в процентах:
.
Средний темп прироста определяется, исходя из темпа роста:
или .
В практике статистики нередко возникает необходимость сравнения между собой рядов динамики двух или более родственных или взаимосвязанных явлений (уголь и нефть, шерсть и шелк). Для этого нужно преобразовывать абсолютные показатели сравниваемых рядов динамики в относительные, приняв показатели какого-либо одного года за 1 или 100. Такое преобразование рядов динамики, состоящее из абсолютных величин, в сопоставимые между собой ряда относительных величин, называется приведением их к общему основанию.
Таблица 21