Разрешающая способность

Системы цветов.

Существует два способа представления графических изображений:растровый и векторный. Соответственно различают растровый и векторный форматы графичес­ких файлов, содержащих информацию графического изображения. Растровые фор­маты хорошо подходят для изображений со сложными гаммами цветов, оттенков и форм. Это такие изображения, как фотографин, рисунки, отсканированные данные. Векторные форматы хорошо применимы для чертежей и изображений с простыми формами, тенями и окраской.

Растровая графика

Наиболее просто реализовать растровое представление изображения.Растр, или растровый массив (bitmap), представляет совокупность битов, расположенных на сет­чатом поле-канве. Бит может быть включен (единичное состояние) или выключен (ну­левое состояние). Состояния битов можно использовать для представления черного или белого цветов, так что, соединив на канве несколько битов, можно создать изоб­ражение из черных и белых точек.

Растровое изображение напоминает лист клетчатой бумаги, на котором каждая кле­точка закрашена черным или белым цветом, в совокупности формируя рисунок, как показано на

рис. 1

Разрешающая способность - student2.ru

Рис.1. Растровое изображение

Основным элементом растрового изображения являетсяпиксел (pixel). Под этим тер-мином часто понимают несколько различных понятий: отдельный элемент растрового изображения, отдельная точка на экране монитора, отдельная точка на изображении, напечатанном принтером. Поэтому на практике эти понятия часто обозначают так:

• пиксел — отдельный элемент растрового изображения;

• видеопиксел — элемент изображения на экране монитора;

•точка — отдельная точка, создаваемая принтером или фотонаборным автоматом.

Количество точек растра называется разрешающей способность (или разрешением) монитора.

Цвет каждого пиксела растрового изображения — черный, белый, серый или любой из спектра — запоминается с помощью комбинации битов. Чем больше битов используется для этого, тем большее количество оттенков цветов для каждого пиксела можно получить. Число битов, используемых компьютером для хранения информации о каждом пикселе, называется битовой глубиной или глубиной цвета.

Наиболее простой тип растрового изображения состоит из пикселов, имеющих два возможных цвета — черный и белый. Для хранения такого типа пикселов требуется один бит в памяти компьютера, поэтому изображения, состоящие из пикселов такого вида, называются 1-битовыми изображениями. Для отображения большего количества цветов используется больше битов информации. Число возможных и доступных цветов или градаций серого цвета каждого пиксела равно двум в степени, равной количеству битов, отводимых для каждого пиксела. 24 бита обеспечивают более 16 миллионов цве­тов. О 24-битовых изображениях часто говорят как об изображениях с естественными цветами, так как такого количества цветов более чем достаточно, чтобы отобразить всевозможные цвета, которые способен различать человеческий глаз.

Основные недостатки растровой графики :

1) Каждое изображение для своего хранения требует большое количество памяти. Простые растровые картин­ки, такие как копии экрана компьютера или черно-белые изображения, занимают до нескольких сотен килобайтов памяти. Детализированные высококачественные рисун­ки, например, сделанные с помощью сканеров с высокой разрешающей способностью, занимают уже десятки мегабайтов. Для разрешения проблемы обработки объемных (в смысле затрат памяти) изображений используются два основных способа:

• увеличение памяти компьютера;

• сжатие изображений.

2) Другим недостатком растрового представления изображений является снижение качества изображений при масштабировании.

Векторная графика

Векторное представление, в отличие от растровой графики, определяет описание изображения в виде линий и фигур, возможно, с закрашенными областями, заполняе­мыми сплошным или градиентным цветом. Хотя это может показаться более сложным, чем использование растровых массивов, но для многих видов изображений использова­ние математических описаний является более простым способом.

В векторной графике для описания объектов используются комбинации компью­терных команд и математических формул для описания объектов. Это позволяет раз­личным устройствам компьютера, таким как монитор и принтер, при рисовании этих объектов вычислять, где необходимо помещать реальные точки.

Векторную графику часто называют объектно-ориентированной или чертежной гра­фикой. Имеется ряд простейших объектов, или примитивов, например: эллипс, прямоу­гольник, линия. Эти примитивы и их комбинации используются для создания более слож­ных изображений. Если посмотреть содержание файла векторной графики, обнаружива­ется сходство с программой. Он может содержать команды, похожие на слова, и данные в коде ASCII, поэтому векторный файл можно отредактировать с помощью текстового ре­дактора. Приведем в условном упрощенном виде команды, описывающие окружность:

объект — окружность;

центр — 50, 70; радиус — 40;

линия: цвет — черный, толщина — 0.50;

заливка — нет.

Данный пример показывает основное достоинство векторной графики — описание объекта является простым и занимает мало памяти. Для описания этой же окружности средствами растровой графики потребовалось бы запомнить каждую отдельную точку изображения, что заняло бы гораздо больше памяти.

Кроме того, векторная графика в сравнении с растровой имеет следующие преиму­щества:

• простота масштабирования изображения без ухудшения его качества;

• независимость объема памяти, требуемой для хранения изображения, от выбран­ной цветовой модели.

Недостатком векторных изображений является их некоторая искусственность, зак­лючающаяся в том, что любое изображение необходимо разбить на конечное множество составляющих его примитивов.

Растровая и векторная графика существуют не обособлено друг от друга. Так, вектор­ные рисунки могут включать в себя и растровые изображения. Кроме того, векторные и растровые изображения могут быть преобразованы друг в друга — в этом случае говорят о конвертации графических файлов в другие форматы. Достаточно просто выполняется

преобразование векторных изображений в растровые. Не всегда осуществимо преобразова­ние растровой графики в векторную, так как для этого растровая картинка должна содер­жать линии, которые могут быть идентифицированы программой конвертации (типа CorelTrace в составе пакета CorelDraw) как векторные примитивы. Это касается, например, высококачественных фотографий, когда каждый пиксел отличается от соседних.

Разрешающая способность

Разрешающая способность — это количество элементов в заданной области. Это! термин применим ко многим понятиям, например, таким как:

• разрешающая способность графического изображения;

• разрешающая способность принтера как устройства вывода;

• разрешающая способность мыши как устройства ввода.

Например, разрешающая способность лазерного принтера может быть задана 300 dpi (dot per inche — точек на дюйм), что означает способность принтера напечатать на от­резке в один дюйм 300 отдельных точек. В этом случае элементами изображения явля­ются лазерные точки, а размер изображения измеряется в дюймах.

Разрешающая способность графического изображения измеряется в пикселах на дюйм. Отметим, что пиксел в компьютерном файле не имеет определенного размера, так как хранит лишь информацию о своем цвете. Физический размер пиксел приобретает при отображении на конкретном устройстве вывода, например, на мониторе или принтере.

Разрешающая способность технических устройств по-разному влияет на вывод век­торной и растровой графики.

Так, при выводе векторного рисунка используется максимальное разрешение уст­ройства вывода. При этом команды, описывающие изображение, сообщают устройству вывода положение и размеры какого-либо объекта, а устройство для его прорисовки использует максимально возможное количество точек. Таким образом, векторный объект, например, окружность, распечатанная на принтерах разного качества, имеет на листе бумаги одинаковые положение и размеры. Однако более гладко окружность выглядит при печати на принтере с большей разрешающей способностью, так как состоит из боль­шего количества точек принтера.

Значительно большее влияние разрешающая способность устройства вывода оказывает на вывод растрового рисунка. Если в файле растрового изображения не определено, сколь­ко пикселов на дюйм должно создавать устройство вывода, то по умолчанию для каждого пиксела используется минимальный размер. В случае лазерного принтера минимальным элементом служит лазерная точка, в мониторе — видеопиксел. Так как устройства вывода отличаются размерами минимального элемента, который может быть ими создан, то размер растрового изображения при выводе на различных устройствах также будет неодинаков.

Наши рекомендации