ЛЕКЦИЯ 13. Операторы Робертса, Собеля, Лапласа

Простой вариант вычисления дискретного градиента дает оператор Робертса. При его построении используется тот факт, что для вычисления модуля градиента можно использовать производные (разности) в любых двух взаимно перпендикулярных направлениях. В операторе Робертса берутся диагональные разности:

ЛЕКЦИЯ 13. Операторы Робертса, Собеля, Лапласа - student2.ru

где

ЛЕКЦИЯ 13. Операторы Робертса, Собеля, Лапласа - student2.ru

То есть здесь отдельные разности формируются двумя КИХ-фильтрами, импульсные характеристики которых соответствуют маскам 2×2:

ЛЕКЦИЯ 13. Операторы Робертса, Собеля, Лапласа - student2.ru

Еще один вариант – оператор Собела. В нем обработанное (промежуточное) изображение g(n1, n2) формируется так же, как в операторе Робертса (и обычном градиенте), но величины s1 и s2 вычисляются линейной обработкой масками 3×3:

ЛЕКЦИЯ 13. Операторы Робертса, Собеля, Лапласа - student2.ru

Существуют и другие приближения градиента. Следует отметить, что применение любых градиентных операторов дает обычно сходные результаты. Различия наблюдаются только в их устойчивости к шуму.

Для решения задачи выделения перепадов яркости можно применять дифференциальные операторы более высокого порядка, например оператор Лапласа. В непрерывном случае

ЛЕКЦИЯ 13. Операторы Робертса, Собеля, Лапласа - student2.ru

Значение лапласиана является нечувствительным к ориентации границ областей, что и позволяет использовать его при детектировании контуров. В дискретном случае оператор Лапласа можно реализовать в виде процедуры линейной обработки изображения окном 3×3. Действительно, вторые производные можно аппроксимировать вторыми разностями:

ЛЕКЦИЯ 13. Операторы Робертса, Собеля, Лапласа - student2.ru

ЛЕКЦИЯ 13. Операторы Робертса, Собеля, Лапласа - student2.ru

Суммируя вторые разности, получаем маску

ЛЕКЦИЯ 13. Операторы Робертса, Собеля, Лапласа - student2.ru

Это импульсная характеристика КИХ-фильтра, вычисляющего лапласиан. Лапласиан может принимать как положительные, так и отрицательные значения, поэтому, в операторе выделения контуров следует взять его абсолютное значение. Таким образом, получаем процедуру выделения границ, нечувствительную к их ориентации:

ЛЕКЦИЯ 13. Операторы Робертса, Собеля, Лапласа - student2.ru

У оператора Лапласа есть и достоинства, и недостатки по сравнению с градиентными операторами. При обработке изображения он дает несколько иные результаты, нежели градиент. Дело в том, что вторая производная позволяет выделить не участки наклона функции, а участки ее изгибов. Одномерный случай представлен на рисунке 13.1.

Если граница размыта, то после обработки лапласианом она раздваивается (рисунок 13.1в). Это недостаток лапласиана, для его устранения приходиться использовать дополнительную обработку полученного графического препарата. Еще один недостаток лапласиана — сильное влияние шумов. В то же время вычисление второй (а не первой) производной позволяет легко выделять границы типа излома — это достоинство данного метода.

ЛЕКЦИЯ 13. Операторы Робертса, Собеля, Лапласа - student2.ru

Рисунок 13.1 – Особенности применения Лапласиана: а) – контур; б) – модуль градиента; в) – модуль лапласиана

Наши рекомендации