Прямоугольная изометрия, Прямоугольная диметрия.

Пр

Прямоугольная изометрия характеризуется тем, что коэффициенты искажения составляют 0,82. Их получают из соотношения (1).

Для прямоугольной изометрии из соотношения (1) получаем:

Зu2 = 2, или и = v - w = (2/3)1/2 = 0,82, т. е. отрезок координатной оси

длиной 100 мм в прямоугольной изометрии изобразится отрезком аксонометрической оси длиной 82 мм. При практических построениях пользоваться такими коэффициентами искажения не совсем удобно, поэтому ГОСТ 2.317—69 рекомендует пользоваться приведенными коэффициентами искажения:

и = v = w — 1.

Построенное таким образом изображение будет больше самого предмета в 1,22 раза, т. е. масштаб изображения в прямоугольной изометрии будет МА 1,22: 1.

Аксонометрические оси в прямоугольной изометрии располагаются под углом 120° друг к другу (рис. 157). Изображение окружности в аксонометрии представляет интерес, особен-

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

Рис. 157

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

Рис. 158

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

Рис. 159

но окружностей, принадлежащих координатным или им параллельным плоскостям.

В общем случае окружность проецируется в эллипс, если плоскость окружности расположена под углом к плоскости проекции (см. § 43). Следовательно, аксонометрией окружности будет эллипс. Для построения прямоугольной аксонометрии окружностей, лежащих в координатных или им параллельных плоскостях, руководствуются правилом: большая ось эллипса перпендикулярна аксонометрии той координатной оси, которая отсутствует в плоскости окружности.

В прямоугольной изометрии равные окружности, расположенные в координатных плоскостях, проецируются в равные эллипсы (рис. 158).

Размеры осей эллипсов при использовании приведенных коэффициентов искажения равны: большая ось 2а= 1,22d, малая ось 2b = 0,71d, где d — диаметр изображаемой окружности.

Диаметры окружностей, параллельных координатным осям, проецируются отрезками, параллельными изометрическим осям, и изображаются равными диаметру окружности: l1=l2 =l3 = d, при этом

l1||x; l2||y; l3||z.

Эллипс, как изометрию окружности, можно построить по восьми точкам, ограничивающим его большую и малую оси и проекции диаметров, параллельных координатным осям.

В практике инженерной графики эллипс, являющийся изометрией окружности, лежащей в координатной или ей параллельной плоскости, можно заменить четырехцентровым овалом, имеющим такие же

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

Рис. 160

оси: 2a = 1,22d и 2b = 0,71 d. На рис. 159 показано построение осей такого овала для изометрии окружности диаметра d.

Для построения аксонометрии окружности, расположенной в проецирующей плоскости или плоскости общего положения, нужно выделить на окружности некоторое число точек, построить аксонометрию этих точек и соединить их плавной кривой; получим искомый эллипс— аксонометрию окружности (рис. 160).

На окружности, расположенной в горизонтально проецирующей плоскости, взято 8 точек (1,2,... 8). Сама окружность отнесена к натуральной системе координат (рис. 160, а).Проводим оси эллипса прямоугольной изометрии и, используя приведенные коэффициенты искажения, строим вторичную проекцию окружности 11 1,..., 511 по координатам х и у (рис. 160, б). Достраивая аксонометрические координатные ломаные для каждой из восьми точек, получаем их изометрию (11, 21, ... 81). Соединяем плавной кривой изометрические проекции всех точек и получаем изометрию заданной окружности.

Изображение геометрических поверхностей в прямоугольной изометрии рассмотрим на примере построения стандартной прямоугольной изометрии усеченного прямого кругового конуса (рис. 161).

На комплексном чертеже изображен конус вращения, усеченный горизонтальной плоскостью уровня, расположенной на высоте z от нижнего основания, и профильной плоскостью уровня, дающей в се-

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

Рис. 161

чении на поверхности конуса гиперболу с вершиной в точке А. Проекции гиперболы построены по отдельным ее точкам.

Отнесем конус к натуральной системе координат Oxyz. Построим проекции натуральных осей на комплексном чертеже и отдельно их изометрическую проекцию. Построение изометрии начинаем с построения эллипсов верхнего и нижнего оснований, которые являются изометрическими проекциями окружностей оснований. Малые оси эллипсов совпадают с направлением изометрической оси ОZ (см. рис. 158). Большие оси эллипсов перпендикулярны малым. Величины эллипсов осей определяются в зависимости от величины диаметра окружности (d — нижнего основания и d1 — верхнего основания). Затем строят изометрию сечения конической поверхности профильной плоскости уровня, которая пересекает основание по прямой, отстоящей от начала координат на величину XA и параллельной оси Оу.

Изометрия точек гиперболы строится по координатам, замеряемым на комплексном чертеже, и откладываем без изменения вдоль соответствующих изометрических осей, так как приведенные коэффициенты искажения и = v = w = 1. Изометрические проекции точек гиперболы соединяем плавной кривой. Построение изображения конуса заканчивается проведением очерковых образующих касательной к эллипсам оснований. Невидимая часть эллипса нижнего основания проводится штриховой линией.

157.gif 158.gif

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

159.gif

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

160.gif

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

161.gif

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

Прямоугольная диметрия

Прямоугольная диметрия характеризуется тем, что коэффициенты искажения, определенные из выражения (1), и = w = 0,94, a v = 0,47. Определяют их следующим образом:

u2+(u/2)2+u2=2;

u2 =8/9; u = w = (8/9)1/2=0,94; v = 0,47.

В соответствии с ГОСТ 2.317—69 практические построения в прямоугольной диметрии следует выполнять пользуясь приведенными коэффициентами искажения: u = w=1и v = 0,5.

Расположение осей стандартной прямоугольной диметрии показано на рис. 162. Аксонометрический масштаб для прямоугольной диметрии будет МA 1,06 : 1.

В прямоугольной диметрии равные окружности диаметра d, лежащие в координатных плоскостях хОу и уО, проецируются в равные эллипсы, большая ось которых 2а = 1,06d, а малая — 2b = 0,35d, если пользуемся приведенными коэффициентами искажения. Окружность, расположенная в плоскости xOz, проецируется в эллипс с осями: большая ось которых 2а1 = 1,066d, малая ось — 2b1 = 0,95d (рис. 163). Диаметры.окруж-

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

Рис. 162

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

Рис. 163

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

Рис. 164

ности, параллельные координатным осям, спроецируются в отрезки, параллельные осям диаметрии l1 = l2 = d; l = 0,5d, при этом || Ох; l2 ||Оу; l3 || Oz.

Можно построить кроме указанных точек еще четыре точки, симметричные точкам, ограничивающим проекции диаметров, параллельных координатным осям. Тогда эллипс, как диметрию окружности, можно построить по его двенадцати точкам.

Изображение геометрических поверхностей в прямоугольной диметрии рассмотрим на примере построения стандартной прямоугольной диметрии прямого кругового цилиндра. На рис. 164 приведен пример комплексного чертежа полого цилиндра высотой Н c наружным d и внутренним d1диаметрами. Цилиндр расположим в натуральную величину в натуральной системе координат Oxyz, относительно которой построим диметрическую его проекцию. Как и в случае построения окружностей в изометрии, в диметрии также начнем построение фигуры с эллипсов верхнего и нижнего оснований цилиндра, которые являются изометрическими проекциями окружностей этих оснований. Окружности основания расположены в плоскостях, параллельных горизонтальной плоскости проекций, поэтому, пользуясь приведенными ранее правилами, определим, что большие оси эллипсов будут перпендикулярны оси Oz. Малые оси эллипсов совпадут с направлением оси Oz. Центры осей эллипсов нижнего и верхнего оснований расположены на расстоянии Я. Величины осей определяем в зависимости от величины наружного и внутреннего диаметров цилиндров. Построив эллипсы, приведем очерковые линии, касательные к внешним эллипсам.

Для наглядности построим вырез четверти цилиндра, построение которого видно из рис. 164. Направление штриховки выреза выберем, как показано на рис. 200. Невидимые линии покажем штриховыми линиями. Для наглядности такими же линиями покажем линии вырезанной части цилиндра. Видимые контурные линии наводят нужной толщиной.

162.gif

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

163.gif

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

164.gif

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

Начертательная геометрия.

Метод проекций

ЦЕНТРАЛЬНОЕ ПРОЕЦИРОВАНИЕ

Основными видами проецирования являются центральное и параллельное. Центральное проецирование представляет собой общий случай проецирования геометрических образов из некоторого центра на плоскость.

Пусть задана плоскость П1 и кривая линия k с точками А, В, С (рис.1.1).

Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru Рис.1.1

Возьмем некоторую точку S, не лежащую в плоскости П1. Через точку S и точки А, В, С кривой k проведем прямые до пересечения с плоскостью П1 в точках A1, B1, C1. Проведя таким образом через S и каждую точку кривой k прямые, получим в плоскости П1 изображение k1кривой k.

В соответствии с описанным построением введем следующие понятия:

S - центр проекций; П1 - плоскость проекций; кривая k с точками А, В, С - объект проецирования; SА, SВ, SС - проецирующие лучи;A1,B1,C1 - центральные проекции точек А, В, С; k1 - центральная проекция кривой k. Рассматривая каждую пространственную фигуру как совокупность точек, можно сказать, что проекция фигуры представляет собой множество проекций ее точек.

Свойства центрального проецирования:

1. Любая точка (кроме S) проецируется на плоскость проекций в единственную точку (рис.1).

2. Каждой точке (A, B, C, D,...), принадлежащей какой-либо линии (кривой или прямой), соответствует проекция (A1, B1, C1, D1, ...) этой точки на проекции данной линии (рис.1).

3. Кривая в общем случае проецируется в кривую, а прямая - в прямую. Если прямая совпадает с проецирующим лучом, например DE (рис.1), то она проецируется в точку D1 E1. Плоскость, проходящая через центр проекций, проецируется в прямую и называется проецирующей. Кривая, все точки которой принадлежат проецирующей плоскости, проецируется в прямую.

4. Точка пересечения линий проецируется в точку пересечения проекций этих линий (рис.1).

Центральное проецирование обладает большой наглядностью и применяется в строительном черчении, в архитектуре, в живописи и т.п. Недостатком центрального проецирования является сложность построения изображения предмета и определения истинных размеров. Поэтому оно имеет ограниченное применение в техническом черчении.

ПАРАЛЛЕЛЬНОЕ ПРОЕЦИРОВАНИЕ

Параллельное проецирование можно рассматривать как частный случай центрального проецирования с бесконечно удаленным центром проекций. Осуществляется оно пучком параллельных проецирующих лучей заданного направления. Пусть требуется построить параллельную проекцию кривой k на плоскость П1(рис.1.2). Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru

Рис. 1.2 Прямоугольная изометрия, Прямоугольная диметрия. - student2.ru Рис.1.3

Спроецируем в направлении s все точки кривой k на плоскость П1. Чтобы спроецировать точки указанной кривой, например А, В, С, нужно провести через них прямые, параллельные направлению s, до пересечения с плоскостью П1. Точки пересечения A1,B1,C1 проецирующих лучей с плоскостью П1 и будут параллельными проекциями точек А, В и С. Таким образом можно построить проекции множества точек кривой k. В зависимости от направления проецирования по отношению к плоскости проекций П1 различают два вида параллельных проекций: косоугольную, когда проецирующие лучи не перпендикулярны к плоскости П1 (рис. 1.2, кривая k), и прямоугольную (или ортогональную), когда проецирующие лучи перпендикулярны к плоскости проекций (рис.1.2, прямая а). Несмотря на то, что параллельное проецирование по сравнению с центральным дает меньшую наглядность, параллельные проекции, особенно ортогональные, обладают удобоизмеримостью и простотой построения. Поэтому ортогональное проецирование широко распространено в технике и является основным методом начертательной геометрии.

Наши рекомендации