Влияние корпуса судна на рулевую силу

Руль расположенный за корпусом судна, работает в более сложных и неблагоприятных условиях по сравнению с изолированным. Это происходит за счет влияния попутного потока воды, образующегося за движущимся судном, действия скоса набегающего потока за корпусом, близко расположенной к рулю «твердой стенки» в виде днищевой части кормового подзора, действия движителей.

Таким образом, влияние корпуса на работу ДРК проявляется в изменении кинематических параметров натекающего на ДРК потока, т.е. его скорости и направления, в связи с чем этот вид взаимодействия называется кинематическим.

Влияние корпуса судна на рулевую силу - student2.ru

Рис. 13 Образование попутного потока за корпусом судна

При прямолинейном движении средняя скорость потока, натекающего на руль, расположенный вне струи гребного винта, определяется по формуле

Влияние корпуса судна на рулевую силу - student2.ru , (37)

где Влияние корпуса судна на рулевую силу - student2.ru - коэффициент попутного потока, характеризующий скорость за корпусом в районе ДРК в отсутствие последнего, т.е. за «голым» корпусом судна.

В случае, когда часть площади руля располагается в струе винта, (рис.14) средняя скорость натекания воды на руль определяется по формуле

Влияние корпуса судна на рулевую силу - student2.ru , (38)

где Влияние корпуса судна на рулевую силу - student2.ru - часть площади руля, размещенная в струе винта;

Влияние корпуса судна на рулевую силу - student2.ru - общая площадь руля. Влияние корпуса судна на рулевую силу - student2.ru - аксиальная скорость потока выбрасываемая винтом

Влияние корпуса судна на рулевую силу - student2.ru

Рис. 14 Схема обтекания руля потоком воды от руля

Кинематическое взаимодействие ДРК с корпусом характеризуется также коэффициентом номинального скоса потока Влияние корпуса судна на рулевую силу - student2.ru в районе ДРК.

Под коэффициентом номинального попутного потока при криволинейном движении судна подразумевается величина, которая зависит от формы обводов корпуса судна и параметров его движения: угловой скорости поворота и угла дрейфа. Он характеризует скорость натекания воды на ДРК при криволинейном движении, определенную в предположении, что корпус судна свободно проницаем.

Этот коэффициент играет особую роль в расчетах поперечной силы ДРК, так как он определяет действительный угол натекания воды на ДРК в целом (так называемый, угол атаки ДРК). Основным параметром, определяющим величину этого коэффициента, можно считать местный угол дрейфа в районе расположения ДРК. При малых углах дрейфа его величина составляет 0,7÷1,0°. На внешнем борту двухвальных судов он может быть больше 1,0°. В любом случае обычно, он не превышает 2÷4°.

Как при прямолинейном, так и при криволинейном движении присутствие вблизи корпуса работающего ДРК изменяет поле давлений в кормовой части судна. Результирующая этих изменений давления, распределенных по поверхности судна, образует приложенную к корпусу силу, называемую силой засасывания. Таким образом, влияние ДРК на обтекание корпуса проявляется в образовании на последнем силы засасывания, вследствие чего этот вид взаимодействия называют динамическим.

Составляющие силы засасывания в системе координат, связанных с ЦТ судна образуют продольную и поперечную силы засасывания.

При прямолинейном движении судна поперечная сила засасывания практически равна нулю, а продольная сила засасывания представляет собой не что иное, как дополнительное сопротивление воды движению судна. Несмотря на очевидную физичность такого представления, в практике расчетов ходкости обычно используют другой способ. Так как величина дополнительного сопротивления существенно зависит от режима работы движителя, то действующую на корпус силу засасывания условно относят к числу сил, действующих на ДРК, и рассматривают ее как используемый на преодоление дополнительной силы сопротивления "потерянный" упор движителя (см. формулу (28)).

Такое представление позволяет считать сопротивление воды движению судна, действующее на его корпус, не меняющимся в присутствии движителя и использовать для его определения зависимости, полученные для «голого» корпуса.

Поперечная сила засасывания при криволинейном движении также может быть отнесена либо к поперечной гидродинамической силе на корпусе судна, либо к поперечной силе, развиваемой ДРК.

Сложный характер величины поперечной силы засасывания объясняет трудности качественного исследования динамического взаимодействия и почти полное отсутствие количественных сведений о нем.

В настоящее время гидродинамические взаимодействия элементов комплекса «корпус судна - гребные винты – рули» учитывается главным образом при определении сил на рулях и гребных винтах путем введения эмпирических поправок на направление и скорость потока, натекающего на эти элементы судна с учетом влияния корпуса. Обратное воздействие рулей и гребных винтов на гидродинамические характеристики корпуса судна при криволинейном движении в практических методах расчета управляемости не учитывается.

Экспериментальные данные отечественных и зарубежных исследователей, однако, свидетельствуют о том, что это влияние может быть достаточно существенным.

Так, поперечная сила, возникающая на корпусе судна за счет перекладки руля, расположенного в ДП в отдельных случаях достигает 30% общей силы, вызываемой перекладкой руля. В опытах А.Д.Гофмана значение дополнительной поперечной силы на корпусе судна при перекладке поворотной насадки достигало 20% поперечной силы изолированного корпуса судна при его поступательном движении с углом дрейфа.

Для ориентировочных расчетов скорость потока, обтекающего руль Влияние корпуса судна на рулевую силу - student2.ru , с учетом влияния попутного потока, скоса и действия движителей можно определять по следующим выражениям:

Влияние корпуса судна на рулевую силу - student2.ru - для одновинтовых судов;

Влияние корпуса судна на рулевую силу - student2.ru -для двухвинтовых с рулем в ДП;

Влияние корпуса судна на рулевую силу - student2.ru - для двухвинтовых с двумя рулями за винтами.

Наши рекомендации