Дой из 2 параллельных прямых то такие треугольники равны.
Равноудалены от другой прямой.
Расстояние от произвольной точки 1ой из параллельных прямых до
другой прямой называется прямой называется расстоянием между
этими прямыми.
8 класс.
Глава V.
Многоугольники.
Сумма углов выпуклого n-угольника В параллелограмме противоположные
= (n-2)180º. стороны равны и противоположные
углы равны.
Диагонали параллелограмма точ-
кой пересечения делятся пополам. Если в 4-угольнике 2 стороны равны и
параллельны, то этот 4-угольник – па-
раллелограм.
Если в 4-угольнике противопо-
ложные стороны попарно равны, Если в 4-угольнике диагональю пересе-
то этот 4-угольник – параллело- каются и точкой пересечения делятся
грамм. пополам, то этот 4-угольник – парал-
лелограмм.
Трапецией называется 4-угольник,
у кот-го 2 стороны параллельны, а Прямоугольником называется парал-
2 другие стороны не параллельны. лелелограмм, у кот-го все углы прямые.
Диагонали прямоугольника равны. Если в параллелограмме дигонали равны,
то этот параллелограмм – прямоуголь-
Ромбом называется параллело- ник.
грамм, у кот-го все стороны
равны. Диагонали ромба взаимно перпендикуляр-
ны и делят его углы пополам.
Квадкатом называется прямо-
угольник, у кот-го все стороны Все углы квадрата равны.
равны.
Диагонали квадрата равны, взаимно
Фигура называется симметричной перпендикулярны, точкой пересечения
относительно прямой а, если для делятся пополам и делят углы
каждой точки фигуры симметричная квадрата пополам.
ей точка относительно прямой а
также принадлежит этой фигуре. Прямая а называется осью симметрии.
Фигура называется симметричной Точка О называется центром симмет-
относительно точки О, если для рии фигуры.
каждой точки фигуры симметрич-
ная ей точка относительно точки О
также принадлежит этой фигуре.
ГлаваVI.
Площадь.
Равные многоугольники имеют S квадрата равна квадрату его стороны.
Равные S.
Если многоугольник составлен из Теорема: S прямоугольника = про-
нескольких многоугольников, то изведению его смежных сторон.
Его S = сумме площадей этих
многоугольников. Теорема: S параллелограмма = про-
изведению его основания на высоту.
Теорема: S треугольника =
= произведению его основания S прямоугольного треугольника = 1/2
на высоту. произведения его катетов.
Если высоты 2ух 3-угольников Теорема: Если угол 1го 3-угольника
равны, то их S относятся равен углу другого 3-угольника, тоS
как основания. этих 3-угольников относятся как про-
Изведения сторон, заключающих равные
Теорема: S трапеции = про- углы.
Изведению полусуммы её осно-
ваний на высоту. Теорема: В прямоугольном 3-угольни-
ке квадрат гипотенузы = сумме квадра-
Теорема: Если квадрат 1ой тов катетов.
стороны 3-угольника = сумме
Квадратов 2 других сторон, то
Угольник прямоугольный.
Глава VII.
Подобные треугольники.
Определение: 2 3-угольника Теорема: Отношение S 2ух подоб-
называются подобными, если их ных 3-угольников = квадрату коэф-
Углы соответственно равны и фициента подобия.
Стороны 1го 3-угольника про-
порционально сходственны Теорема: Если 2 угла 1го 3-уголь-
сторонам другого. ника соответственно = 2ум углам
Другого, то такие 3-угольники по-
Теорема: Если 2 стороны 1го добны.
Угольника пропорциональны 2ум
Сторонам другого 3-угольника и углы, заключённые между этими сторо-
Нами, равны, то такие 3-угольники подобны.
Теорема: Если 3 стороны 1го Теорема: Средняя линия параллель-
3-угольника пропорциональны на 1ой из его сторон и равна ½ этой
М сторонам другого, то такие стороны.
Угольники подобны.
sin острого угла прямоугольного cos острого угла прямоугольного 3-уголь-
3-угольника – отношение ника – отношение прилежащего катета
противолежащего катета к к гипотенузе.
гипотенузе.
tg угла = отношению sin к cos
tg острого угла прямоугольного этого угла: tg = sin/ cos.
3-угольника – отношение противо-
лежащего катета к прилежащему. Основное тригонометрическое
тождество:
Если острый угол 1го прямоугольного sin2α+ cos2α=1.
3-угольника = острому углу другого прямо-
угольного 3-угольника, то синусы, косинусы и тангенсы этих углов равны.
x | 0° | 30° | 45° | 60° | 90° | 180° | 270° | 360° |
sinx | 0 | 1/2 | 2/2 | 3/2 | 1 | 0 | -1 | 0 |
cosx | 1 | 3/2 | 2/2 | 1/2 | 0 | -1 | 0 | 1 |
tgx | 0 | 1/ 3 | 1 | 3 | — | 0 | — | 0 |
ctgx | — | 3 | 1 | 1/ 3 | 0 | — | 0 | — |
0 | П/6 | П/4 | П/3 | П/2 | П | 3П/2 | 2П |
Глава VIII.
Окружность.
Если расстояние от центра окруж- Если расстояние от центра окруж-
ности до прямой < радиуса, то пря- ности до прямой = радиуса, то пря-
мая и окружность имеют 2 общие мая и окружность имеют 2 общие
точки. Прямая является секущей. точки. Прямая является касательной.
Если расстояние от центра окруж- Теорема: Касательная к окруж-
ности до прямой > радиуса, то пря- ности перпендикулярна кr, прове-
мая и окружность не имеют общих дённому в точку касания.
точек.
Теорема: Если прямая проходит
Отрезки касательных к окружнос- через конецr, лежащий на окруж-
ти, проведённые из 1ой точки, рав- ности, и перпендикулярна к этому
ны и составляют равные углы с r, то она является касательной.
прямой, проходящей через эту точ-
ку и центр окружности. Дуга является полуокружностью.
Угол с вершиной в центре окруж- Если дуга АВ окружности с центром
ности — её центральный угол. О < полуокружности или является
полуокружностью, то её градусная
Сумма градусных мер 2ух дуг ок- мера считается равной градусной
ружности с общими концами = мере центрального угла АОВ. Если же
= 360°. дуга АВ > полуокружности, то её
градусная мера считается =
Угол, вершина кот-го лежит на = 360°–<АОВ.
окружности, а стороны пересе-
кают окружность, называется Теорема: Вписанный угол измеряя-
вписанным углом. ется ½ дуги, на кот-ую он опирается.
Луч ВО совпадает с 1ой из сто- Луч ВО делит угол АВС на 2 угла, если
рон угла АВС. луч ВО пересекает дугу АС.
Луч ВО не делит угол АВС на 2 Вписанные углы, опирающиеся на 1 и ту
угла и не совпадает со сторона- же дугу, равны.
ми этого угла, если луч ВО не
пересекает дугу АС. Вписанный угол, опирающийся на полу-
окружность, -- прямой.
Теорема: Если 2 хорды ок- Теорема: Каждая точка бисс-сы