Генетически модифицированые организмы: наука и жизнь
В. КУЗНЕЦОВ, докт. биол. наук, А. БАРАНОВ, канд. биол. наук, В. ЛЕБЕДЕВ, канд. биол. наук.
В журнале «Наука и жизнь» не раз публиковались статьи о достижениях генной инженерии. Судя по откликам, поступившим в редакцию, особый интерес читателей вызывают вопросы получения и использования генетически модифицированных организмов. В декабре 2007 года на сайте журналаwww.nkj.ruмы провели Интернет-интервью, причём в несколько необычном формате: на вопросы отвечали сразу три специалиста, которые имеют разные точки зрения на обсуждаемую проблему. В интервью приняли участие: доктор биологических наук Владимир Васильевич КУЗНЕЦОВ, директор Института физиологии растений им. К. А. Тимирязева РАН, председатель комитета «Биобезопасность пищевых продуктов и методы её контроля» Федерального агентства по техническому регулированию и метрологии; кандидат биологических наук Александр Сергеевич БАРАНОВ, старший научный сотрудник Института биологии развития им. Н. К. Кольцова, президент Общенациональной ассоциации генетической безопасности (OАГБ); кандидат биологических наук Вадим Георгиевич ЛЕБЕДЕВ, старший научный сотрудник филиала Института биоорганической химии РАН им. М. М. Шемякина и Ю. А. Овчинникова (Пущино). Предлагаем вниманию читателей материал, подготовленный на основе Интернет-интервью.
В. Кузнецов:Прежде всего в качестве небольшого вступления я хотел бы сказать, что развитие генно-инженерных технологий — одно из важнейших достижений молекулярной биологии и молекулярной генетики. Эти технологии нашли постоянную «прописку» в фундаментальной науке, где трансгенные организмы активно используются при решении широчайшего спектра общебиологических проблем. Технологии с использованием реком-бинантных ДНК могут в перспективе сыграть важную роль при генотерапии наследственных заболеваний, создании лекарственных препаратов нового поколения, производстве фармакологических и косметических средств и получении технического сырья. Особая роль отводится генетически модифицированным (ГМ) микроорганизмам и изолированным клеткам или органам, например, лекарственных растений, которые культивируются в замкнутых биотехнологических системах и являются суперпродуцентами веществ, обладающих ценными потребительскими свойствами. Как правило, в этом случае речь идёт о произведённых генетически модифицированными организмами (ГМО) химически чистых соединениях, использование которых, по сравнению с продуктами питания, полученными из ГМО или содержащими компоненты ГМО, не сопряжено с биологическими рисками, а их производство является экологически чистым.
В области конструирования новых сельскохозяйственных сортов растений доминируют несколько гигантских биотехнологических компаний, которые производят преимущественно сорта, устойчивые к гербицидам и насекомым. По официальным данным, за период с 1996 по 2003 год общая площадь выращиваемых трансгенных культур увеличилась с 1,7 до 67,7 млн га, а общая рыночная стоимость продукции в 2003 году составила более 4,5 млрд долл. В настоящее время наибольшие площади заняты под трансгенными культурами сои (41,4 млн га, 61%), кукурузы (15,5 млн га, 23%), хлопка (7,2 млн га, 11%) и рапса (3,6 млн га, 5%). Из них растения с генами устойчивости к гербицидам выращиваются на 73% площадей, продуцирующие инсектицидные белки, прежде всего Bt-токсины, — на 18%. Примерно 95% территорий, занятых ГМ-сортами сельскохозяйственных культур, расположены в пяти странах: США, Канаде, Бразилии, Аргентине и Китае.
Генетически модифицированные (трансгенные) организмы можно определить как организмы, генетический материал которых (ДНК) изменён способом, недостижимым естественным путём в ходе внутривидовых скрещиваний. Для получения ГМО используется технология рекомбинантных молекул. Генная инженерия позволяет переносить отдельные гены из любого живого организма в любой другой живой организм в составе кольцевых молекул ДНК (плазмид). Встраивание в геном организма — хозяина новых конструкций имеет целью получить новый признак, недостижимый для данного организма путём селекции или требующий многолетней работы селекционеров. Применение биотехнологий позволяет значительно ускорить процесс получения нового сорта, существенно снизить его себестоимость и получить хорошо прогнозируемый эффект по признаку, определяемому встроенной конструкцией. Но вместе с данным признаком организм приобретает целый набор новых качеств. Это обусловлено как плейотропным эффектом — явлением, при котором один ген отвечает за несколько признаков, так и свойствами самой встроенной конструкции, в том числе её нестабильностью и регуляторным воздействием на соседние гены. Это и создаёт объективную базу для существования потенциальных рисков при использовании генетически модифицированных растений и полученных из них продуктов.
Какие продукты могут содержать ГМО, кроме колбасы и других изделий с добавлением сои? Где берут трансгенные компоненты (ту же сою) отечественные производители? Разве ввоз ГМ-ингредиентов разрешён?
В. Кузнецов.Трансгенная соя (или белок трансгенной сои) присутствует в очень многих пищевых продуктах. Почему это происходит? Потому что трансгенная соя много дешевле мяса, заменителем которого она служит. Помимо сои или соевого белка официально разрешены к хозяйственному использованию следующие трансгенные культуры (по состоянию на 2004 год): рапс аргентинский и рапс польский (получение масла), цикорий, хлопчатник, кукуруза, дыня, папайя, картофель, рис, кабачки, сахарная свёкла, табак, томаты. Из технических культур также разрешён генетически модифицированный лён, из декоративных — гвоздика.
Всё ГМ-сырьё является импортным, поскольку коммерческое выращивание трансгенных растений в открытом грунте в России не разрешено. Границы РФ абсолютно прозрачны для ГМ-продуктов. В настоящее время нет ни одного документа, который требовал бы от поставщика обязательной сертификации ГМО (ГМ-сырья) при выпуске его на таможенную территорию; ни в одном документе не содержится регламентации ввоза и оборота трансгенного сырья.
В. Лебедев.По состоянию на 30 ноября 2007 года в России разрешены к использованию 12 трансгенных растений: 6 сортов кукурузы, 4 сорта картофеля и по 1 сорту сахарной свёклы и риса. Таким образом, все продукты, содержащие вышеперечисленные ингредиенты, могут содержать и ГМО. По данным Роспотребнадзора, компоненты ГМО содержатся менее чем в 1% оборота всех пищевых продуктов.
К сожалению, не всегда мы точно знаем состав покупаемых продуктов. Можете ли вы посоветовать, как уменьшить риск для здоровья при потреблении продуктов, содержащих ГМО?
В. Кузнецов.Ситуация не столь трагична, как может показаться на первый взгляд. Далеко не каждый ГМ-продукт опасен для человека. Скорее наоборот, подавляющее большинство допущенных к продаже ГМ-продуктов безопасны, но при этом сохраняются некоторые потенциальные негативные риски. С учётом того, что визуально невозможно отличить нормальный (традиционный) продукт от генетически модифицированного, ориентироваться нужно лишь на маркировку. В соответствии с недавно принятым федеральным законом подлежат маркировке все продукты, содержащие не менее 0,9% ГМ-компонентов. Подлежат маркировке, но зачастую не маркируются. Так, недавний мониторинг московского и подмосковного пищевых рынков показал, что из 400 наименований пищевых продуктов 111 были генетически модифицированными, причём лишь незначительная часть ГМ-продуктов была маркирована производителем.
А. Баранов.К сожалению, дать чёткий ответ на этот вопрос довольно трудно, так как нигде в мире не определён пороговый уровень допустимой концентрации ГМ-компонента в продукте питания, превышение которого может иметь необратимые отрицательные последствия для здоровья человека. Во многих странах, так же как и в России, установлены законодательные нормы, предписывающие маркировать продукцию, произведённую с использованием трансгенных компонентов растительного или животного происхождения. В России законодательно предписывалось маркировать продукцию независимо от количественного содержания ГМ-ингредиента (ГМИ). Такая качественная норма существовала до ноября 2007 года. Теперь же усилиями сторонников широкого внедрения и использования ГМО в России введена новая норма, позволяющая не маркировать продовольственную продукцию, если в ней содержится менее 0,9% ГМИ. Хотелось бы подчеркнуть, что введённый пороговый уровень 0,9% не имеет к здоровью человека никакого отношения и является послаблением для производителя, скрыто разрешающим использование ГМИ. Есть и ещё один нюанс. В Европе 0,9%-ный порог был введён не от хорошей жизни, а из-за того, что там выращиваются трансгенные растения на полях и генетическое загрязнение реально существует. Откуда этому загрязнению взяться у нас, если законодательно запрещено выращивание такой сельхозпродукции? Только через импорт сырья и готовой продукции. Вот и получается, что мы, как бы сделав два шага вперёд и опередив все страны по строгости своего отношения к ГМО в продуктах питания, с введением количественной нормы сделали шаг назад, тем самым поддержав импортёров и подтолкнув производителей к использованию трансгенного сырья в нашей пищевой промышленности. Так что я затрудняюсь советовать, как уменьшить риск для здоровья при потреблении продуктов, содержащих ГМО, поскольку не определены медико-биологические нормы. Смотрите на этикетки и не покупайте продукты, в которых содержатся ГМ-компоненты. Но это в том случае, если наши производители начнут маркировать такую продукцию, в чём я очень сомневаюсь, поскольку все предыдущие годы, несмотря на существование закона, они этого не делали.
В. Лебедев. Продукция, содержащая более 0,9% компонентов из ГМ-источников, должна маркироваться (такая же норма действует в странах Европейского союза). Однако это правило введено не по причине большей опасности продуктов с ГМ-компонентами, а только в информационных целях. Продукты, содержащие ГМО, разрешённые к использованию, не более опасны для здоровья, чем обычные продукты. Именно на этом принципе основана оценка их безопасности. ГМО, не разрешённые в нашей стране, вообще не должны поступать в продажу аналогично продуктам с превышением ПДК по пестицидам, нитратам и т.п. — за этим обязаны следить соответствующие органы.
Правда ли, что ГМ-растения очень агрессивны и могут «забить» другие растения, даже сорняки? Насколько реальна опасность их неконтролируемого распространения на Земле и уничтожения многих других видов растений?
В. Кузнецов.Скорее неправда, чем правда. Несмотря на то что ГМ-растения относят к инвазиям (это означает, что они имеют некоторую склонность «к агрессии» по отношению к другим видам), угроза давления со стороны трансгенных сортов растений на другие виды не очень велика. Особую обеспокоенность у экологов вызывают так называемые суперсорняки. Под суперсорняками понимают сорные растения, которые вследствие близкородственного переопыления с культурными сортами растений (или с другими сорными растениями) приобретают гены устойчивости к широко применяемым гербицидам, то есть к тем самым химикатам, которые используются для борьбы с сорняками. В печати иногда появляются сообщения о появлении суперсорняков в странах, выращивающих трансгенные сельскохозяйственные культуры, однако статьи на эту тему в рецензируемых научных журналах встречать до сих пор не удавалось.
А. Баранов.Если рассматривать трансгенные растения в плане их роли в экологических системах, то они агрессивны и способствуют нарушению целостности агроэкосистем. Это связано с тем, что большинство трансгенных растений (около 85%) созданы как устойчивые к пестицидам, а остальные — как устойчивые к инсектицидам. По мнению многих учёных, использование ГМ-растений может привести к следующим последствиям: — гибели почвообразующих микроорганизмов и беспозвоночных животных в результате оставления на полях фрагментов трансгенных растений, несущих токсины; — потере разнообразия генофонда диких сородичей культурных растений в генетических центрах их происхождения вследствие переопыления их с родственными трансгенными растениями. Так, в Мексике, центре происхождения по меньшей мере 59 сортов маиса, в 2001 году в аборигенном, диком виде кукурузы обнаружен фрагмент искусственной генетической вставки — вирусный промотор 35S, используемый при создании ГМ-растений. Загрязнение дикой формы, как выяснилось, произошло в результате транспортировки в страну трансгенной кукурузы из США (по данным статьи: Quist D., Chapela I. Transgenic DNA Introgressed into Traditional Maize Landraces in Oaxaca, Mexico // Nature 414, 6863, November 29, 2001); — неконтролируемому переносу генетических конструкций, особенно определяющих различные типы устойчивости к пестицидам, вредителям и болезням растений вследствие переопыления с дикорастущими родственными и предковыми видами, в связи с чем происходит снижение биоразнообразия дикорастущих предковых форм культурных растений и формирование новых форм суперсорняков. Примером такого «перепрофилирования» может служить ситуация в Канаде, где, переопылившись с дикими близкородственными видами, распространился ГМ-рапс. Будучи устойчивым к действию гербицидов, он превратился в суперсорняк (по данным статьи: Beckie H.J., Hall L.M., Warwick S.I. Impact of herbicideHresistant crops as weeds in Canada, proceedings Brighton Crop Protection Council — Weeds, 2001, р. 135H142).
Существуют и риски отсроченного изменения свойств, которые проявляются через несколько поколений и связаны с адаптацией нового гена в геноме растения. Так, у кукурузы, созданной устойчивой к засухе, после нескольких лет культивирования неожиданно проявился новый признак — растрескивание стебля, что привело к гибели всего урожая на полях.
В США сорняки, устойчивые к пестициду «Раундап», создали ряд серьёзных проблем для фермеров, выращивающих сою и хлопчатник. Чтобы бороться с сорняками на полях, фермеры вынуждены из года в год делать всё большие закупки этого химического реагента и использовать его всё в больших дозах, тем самым увеличивая химическую нагрузку на агроэкосистему, или в ряде случаев перейти на применение более токсичных пестицидов. Надо не забывать, что при этом варианте развития событий происходит накопление токсических веществ в зерне и плодах, что впоследствии приводит к значительным проблемам для здоровья человека.
Становится очевидным, что растения, созданные как устойчивые к насекомым-вредителям, не оправдали возлагаемые на них надежды. Через несколько лет массового использования данных сортов трансгенных растений их культивирование оказалось неэффективным и бессмысленным, поскольку у насекомых-фитофагов и других вредителей появляются формы, устойчивые к трансгенным токсинам. Так, по данным американских, российских и китайских учёных, уже через несколько поколений появляются устойчивые формы колорадского жука, других насекомых-фитофагов.
Ещё одна проблема связана с заменой в экологической нише основного вредителя, против которого введён целевой токсин, на нецелевого. Колорадский жук, уничтоженный в результате выращивания ГМ-картофеля, заменяется совкой, а в некоторых агроценозах — тлёй. Данные недавнего исследования Корнельского университета (США) подтверждают факт финансовых потерь фермеров, выращивающих Bt-хлопчатник в Китае из-за нашествия именно вторичных вредителей.
Особое место в этом негативе занимает гибель нецелевых насекомых-опылителей и медосборов. В Азербайджане и США в некоторых районах в результате высевания трансгенной кукурузы и картофеля произошла массовая гибель пчёл. Сорта с внедрённым геном устойчивости к вредителям могут оказаться опасными не только для самих вредителей, но и для других живых существ (см. Аграрная Россия: Научно-производственный журнал. — М.: Фолиум. — 2005, № 1). К примеру, божьи коровки, которые питались тлями, жившими на ГМ-картофеле, становились бесплодными.
Другая проблема — сокращение биологического разнообразия на полях выращивания трансгенных культур. Так, в экспериментах, проведённых в Англии, показано, что биологическое разнообразие на таких полях падает в три раза. Причём резкое его снижение характерно как для почвенных организмов, так и для насекомых, амфибий, рептилий, птиц и млекопитающих.
В. Лебедев.Правда ли, что ГМ-растения очень агрессивны? Нет, это неправда. ГМ-растения обладают одним-двумя новыми признаками, представляющими ценность для человека при условии их возделывания в качестве монокультуры (например, устойчивостью к гербицидам), но не повышающими их жизнеспособность в условиях дикой природы. Они, как и любые культурные растения, предназначенные для интенсивного земледелия, не способны конкурировать с другими видами без помощи человека и уж тем более уничтожать их каким-либо способом.
Насколько предсказуемы результаты экспериментов с генными структурами? Есть ли реальная опасность получения методами «научного тыка» некоего растительного либо животного монстра, способного уничтожить всё живое на этой планете? Хорошо ли генетики осознают отдалённые последствия массового употребления людьми и животными генетически модифицированных продуктов? Ощущают ли они моральное право воздействовать на наследственный механизм и геном человека ? Есть ли в научной деятельности какие-либо табу, то есть границы, которые нарушать никак нельзя?
В. Кузнецов.Думаю, что в настоящее время отсутствует «реальная опасность получения методами «научного тыка» некоего растительного либо животного монстра, способного уничтожить всё живое на этой планете». В то же самое время невозможно, к сожалению, предсказать отдалённые последствия массового и долговременного употребления населением многих стран ГМ-продуктов питания. Причин несколько: несовершенство генно-инженерных технологий получения ГМ-растений, которые не позволяют предсказать возможные негативные изменения метаболизма растений в процессе трансформации, то есть самого переноса «чужеродного» гена; недостаточно надежные методы исследования биобезопасноти ГМ-продуктов и, наконец, несоблюдение производителями и продавцами ГМО и ГМ-продуктов питания требований законодательства в области биобезопасности. Так, для примера следует назвать кукурузу сорта MON863. Эта культура выращивается на коммерческой основе в США и Канаде с 2003 года. Её одобрили для импорта и использования в качестве продуктов питания в таких странах, как Япония, Корея, Тайвань, Филиппины и Мексика. После длительных дебатов кукуруза MON863 получила одобрение Европейской комиссии для использования в качестве корма животных (в 2005 году) и продукта питания людей (в 2006 году). В России же трансгенная кукуруза MON863 была одобрена к использованию ещё в 2003 году. Причём во всех этих странах, в том числе и в странах Евросоюза, должны были исследовать (и, наверное, исследовали) безопасность указанного сорта и полученных из него продуктов. Однако французские учёные лишь в 2007 году показали, что продукты, полученные из данного сорта кукурузы, токсичны для печени и почек животных, а следовательно, с большой вероятностью и для человека.
Другой пример непредсказуемости развития событий в процессе коммерческой эксплуатации ГМ-растений касается кукурузы сорта Star Link®, скандал вокруг которой разгорелся в 2000—2001 годах. Сорт, трансформированный белком-токсином Bacillus thuringiensis СгуЭС (этот токсин белковой природы, уничтожающий европейского кукурузного червя, представляет собой человеческий аллерген — он не переваривается, не разрушается при высокой температуре и приводит к развитию аллергической реакции вплоть до анафилактического шока), в 1998 году был разрешён к использованию американским Агентством по охране окружающей среды с ограничениями как кормовая культура. Однако в результате неконтролируемого переопыления с пищевыми сортами кукурузы урожай от гибридных растений был использован для получения пищевых продуктов. В 2000 году фирма «Авентис» предоставила материалы, подтверждающие возможность использования сорта StarLink® в пищевых целях. Данные экспериментов по оценке токсичности и аллергенности модифицированного продукта (проведённые всего на десяти крысах) якобы свидетельствовали о его безопасности. В пользу своей точки зрения «Авентис» указывала на 30-летний опыт применения белка Cry9C в США в качестве инсектецида и отсутствие в научной литературе данных о токсичном и аллергенном действии белка Cry9C. Тем не менее в результате дополнительных исследований были получены результаты, свидетельствующие об аллергенности указанного сорта. Пример с сортом кукурузы StarLink® не единственное подтверждение реальности таких рисков. В Мексике и Гватемале дикорастущие виды кукурузы содержат трансгенные вставки за счёт переопыления с возделываемыми культурными сортами.
В. Лебедев.Трансгенные сорта не получают методом «научного тыка», вставляя гены откуда попало куда попало и тут же засевая этим поля. Это весьма длительный и трудоёмкий процесс, основные этапы которого следующие: поиск и клонирование нужных генов, встраивание генов в микроорганизмы и наработка белка с его последующим изучением, встраивание генов в модельные растения (табак, арабидопсис) и их изучение, перенос гена в сельскохозяйственные культуры и проведение многочисленных лабораторных, тепличных и полевых испытаний, причём в случае неудовлетворительных результатов этот процесс может быть прерван на любом этапе. На выведение одного трансгенного сорта уходит несколько лет и тратится от десятков до сотен миллионов долларов, большая часть которых идёт на всевозможные проверки безопасности ГМ-растения для человека и окружающей среды.
К сожалению, мне недостаёт воображения писателя-фантаста представить себе способ, с помощью которого один живой организм смог бы уничтожить все остальные, и поэтому я не могу сказать, возможно ли такой способ реализовать с помощью методов генной инженерии.
Мне неизвестны научно обоснованные негативные последствия употребления в пищу ГМ-продуктов, прошедших все необходимые проверки.
Если под воздействием на наследственность человека понимается возможность переноса в его геном ДНК из ГМО, то эта ДНК ничем не отличается от любой другой ДНК, содержащейся в нашей пище, которая за сотни тысяч лет существования человека так и не перешла в наш геном.
Запретов на проведение каких-либо экспериментов нет. Ряд видов генно-инженерной деятельности подлежит лицензированию, существуют правила, регламентирующие проведение испытаний, хранение, утилизацию трансгенного материала и т.д.
Как-то читал в «Науке и жизни» статью о генетически модифицированных растениях. Утверждается, что опасности для потребителя никакой, так как всё едино в желудке переварится. В принципе согласен, но почему такой «вой» поднимается по этому поводу в прессе, да и учёные, я так понимаю, не все с этим согласны? По сути, различные сорта растений выводятся давно путём скрещивания, и ничего — едят и политики и журналисты. Что, велика разница? В чём может заключаться опасность использования генетически модифицированных продуктов?
В. Кузнецов.В настоящее время в данной области чётко сформировались две наиболее популярные точки зрения: сторонники и лоббисты ГМО утверждают, что все генетически модифицированные растения и полученные из них продукты абсолютно безопасны, а их оппоненты придерживаются противоположной точки зрения, в соответствии с которой все ГМ-продукты опасны. Обе позиции не верны, поскольку неправильно говорить об опасности или безопасности ГМ-растений и полученных из них продуктов вообще (обо всех сразу). В каждом конкретном случае необходимо доказать, как требует того принцип принятия мер предосторожности, безопасность вполне конкретного ГМ-растения или полученного из него продукта, после чего они могут беспрепятственно использоваться в коммерческих целях. При отсутствии доказательств безопасности данный конкретный ГМ-организм или полученный из него продукт рассматриваются как потенциально опасные. Именно по этой причине требуется маркировка ГМ-продуктов питания. Маркировка предупреждает потребителя о том, что пока не получены окончательные доказательства безопасности данного конкретного продукта и, следовательно, на данный конкретный момент времени производитель и продавец не дают гарантий полной безопасности продаваемого товара. Необходимость доказательств безопасности ГМ-продуктов следует из несовершенства методов получения трансгенных организмов и неполноты наших фундаментальных знаний о «работе» генома высших организмов. Тем более постепенно накапливаются экспериментальные данные, свидетельствующие о негативном влиянии некоторых ГМ-продуктов на здоровье животных.
В. Лебедев.Разница между сортами, полученными путём скрещивания и методами генной инженерии, заключается в том, что в первом случае непредсказуемым образом переносятся тысячи генов, а во втором — целенаправленно один-два. Имеется ещё одно отличие — вместе с геном ценного признака по технологическим причинам переносят маркерные гены устойчивости к антибиотикам, выделенные из бактерий. Существует мнение, что такие гены могут перейти в бактерии кишечника человека и его нечем будет лечить. Однако ГМ-растения, разрешённые к использованию, содержат гены устойчивости, которые, во-первых, уже широко распространены в почвенных и кишечных бактериях; во-вторых, придают устойчивость к антибиотикам, не использующимся в клинической практике. Другие возможные опасности — токсичность, аллергенность и изменение питательной ценности ГМ-продуктов. Но все ГМ-растения, предназначенные для употребления в пищу, проходят очень жёсткую проверку, которая может продолжаться годами, — их почти буквально разбирают по молекулам, так как никому не хочется потом отвечать по судебным искам. Такая проверка и не снилась обычным продуктам, которые по своей природе содержат токсины, что же касается аллергенности, то несколько процентов населения страдают аллергией к обычным пшенице, сое, арахису и орехам. По этим причинам на третьем десятке лет существования трансгенных растений одобрение на выращивание получило всего около 150 сортов (причём не все из них пищевые), хотя различных полевых испытаний проведено уже несколько десятков тысяч.
Таким образом, научные причины для «воя» отсутствуют. Но остаются ещё экономические: сокращение спроса на пестициды из-за распространения устойчивых к вредителям ГМ-культур, защита своих сельхозпроизводителей от ввоза более дешёвой трансгенной продукции — и политические: приобрести популярность на борьбе с чем-либо (трансгенными растениями, атомными электростанциями и т.д.) гораздо проще, чем на созидательной деятельности.
В некоторых научных публикациях утверждается, что генетически модифицированные продукты в организме человека расщепляются в обычные аминокислоты и прочие соединения. И поэтому они безопасны. А в других статьях пишут, что кормили ГМ-продуктами мышей, и через два-три поколения мыши стали вырождаться. Как это всё совместить?
В. Кузнецов.Любой трансген, то есть ген, используемый для переноса, абсолютно безопасен. Кодируемый этим трансгеном белок может быть также безопасным для человека и животных, а может обладать выраженной аллергенностью или токсичностью. Причём эти негативные эффекты могут быть реализованы ещё до того, как белок разрушится ферментами в желудочно-кишечном тракте человека.
Однако основные риски использования ГМ-продуктов питания кроются не столько в трансгенном белке, сколько в непрогнозируемом изменении клеточного метаболизма растения в процессе его трансформации, то есть встраивания трансгена в растительный геном. Растения в норме синтезируют десятки тысяч различных веществ, а с учётом того, что в отличие от всех других живых организмов растения имеют так называемый вторичный метаболизм, — сотни тысяч. И невозможно предугадать, какие именно характеристики могут измениться в результате произошедшего трансформационного события. В частности, в ответ на нарушение метаболизма при введении чужеродных генов в растениях могут накапливаться полиамины — органические азотсодержащие основания высокой биологической активности. Они образуются как нормальные продукты обмена веществ растений в микроколичествах. Однако при нарушении обмена веществ в неблагоприятных условиях окружающей среды (засуха, засоление почвы, действие техногенных факторов) возникает опасность накопления этих веществ в клетках до токсических концентраций. Особенно опасна аккумуляция путресци-на и кадаверина, которые впервые были открыты ещё в 1885 году как продукты разложения белка гнилостными бактериями и названы «трупными» ядами. Они вызывают отравление, образование язв на коже и слизистых оболочках, способствуют ускоренному развитию раковых опухолей. Полиамины в токсичных количествах могут попадать в организм человека как с некачественными продуктами животного происхождения, так и с растительной пищей. Одной из особенностей ядовитых растений (белладонна и др.) и грибов (мухоморы, бледная поганка) является высокое содержание в них путресцина и кадаверина. Исследования последних лет показали, что при активации экспрессии генов, отвечающих за образование полиаминов, в обычных употребляемых в пищу растениях или их плодах (в частности, в томатах) накапливаются избыточные количества этих соединений.
В. Лебедев.Мне неизвестны научные публикации, в которых бы сообщалось о вредном воздействии ГМ-растений или продуктов из них. Хочу подчеркнуть, именно научные, то есть выходу которых предшествуют положительные заключения рецензентов. Что же касается вырождения мышей, то, вероятно, имеются в виду эксперименты с крысами доктора биологических наук И. Ермаковой. Эти результаты в научной печати не публиковались, о них сообщалось только на конференциях и в СМИ. Однако, учитывая большой общественный резонанс, вызванный её работами не только в России, но и в мире, редакция самого авторитетного научного журнала в области биотехнологии «Nature Biotechnology» предложила И. Ермаковой ответить на ряд вопросов, а затем попросила экспертов прокомментировать её ответы («Nature Biotechnology», 2007, № 9, с. 981—987). Эксперты пришли к заключению, что из-за ошибок в проведении экспериментов результаты и сделанные из них выводы о вреде ГМ-сои являются некорректными с научной точки зрения.
Почему у нас только один институт — Институт питания РАМН — имеет право на выдачу решения о безопасности тех или иных продуктов, в том числе содержащих ГМО? Насколько объективны их заключения? Насколько современны и совершенны применяемые методики определения безопасности продуктов? Можно ли организовать в стране проведение нескольких независимых экспертиз?
В. Кузнецов.Институт питания Российской академии медицинских наук — именно та организация в стране, которая отвечает за безопасность пищевых продуктов. Решением Главного государственного санитарного врача РФ проведение экспертизы ГМ-продуктов было поручено указанному учреждению, а проведение медико-генетической экспертизы — центру «Биоинженерия» Российской академии наук. Обе организации имеют достаточно современную материальную базу для проведения подобных исследований. По поступающей из разных источников информации биологическая безопасность ГМ-продуктов питания проводится, прежде всего, камерально, то есть на основании представленных производителем или импортёром документов.
А. Баранов.Насколько мне известно, заключения, которые дал Институт питания РАМН в своих научных отчётах по проверке генетически модифицированных сортов таких растений, как свёкла и картофель, не вполне объективны и корректны. Во всяком случае, рассмотрев эти же научные данные, Комиссия по ГМО Государственной экологической экспертизы России сделала противоположные выводы, признав эти сорта небезопасными и не разрешив их коммерческое выращивание на территории Российской Федерации. Методические рекомендации и методы по проверке на биобезопасность ГМО разработаны, но, может быть, не вполне совершенны, поскольку наука всё время развивается и не стоит на месте. Более того, в результате генетических трансформаций могут образовываться новые белки, которые не детектируются при проверке и которые могут оказаться небезопасными для здоровья человека. Привнесение пищевых рисков может быть связано ещё и с тем, что не всегда уполномоченные институты исполняют все методические требования, предъявляемые к проверке на безопасность. Например, все 16 линий ГМ-растений, разрешённые на сегодня к использованию на территории России, прошли проверку только на одном поколении и лишь в одном случае — на двух, хотя методические указания, утверждённые Главным государственным санитарным врачом России, предписывают это делать на пяти поколениях. Проведение независимой проверки на безопасность организовать у нас в стране вполне реально. Во многих странах Запада за безопасностью продовольственного рынка следят общественные структуры, которым государство делегируют эту функцию. Получается как бы «народный контроль», который ведут ассоциации или общественные объединения под контролем государства.
В. Лебедев.Институт питания — ведущее научное учреждение в этой области. Помимо него экспертизу пищевых продуктов проводят также Институт вакцин и сывороток им. И. И. Мечникова и Московский НИИ гигиены им. Ф. Ф. Эрисмана. Методики определения безопасности продуктов с ГМО разработаны на основе совершенствующихся в течение десятилетий методов оценки безопасности пестицидов, средств бытовой химии, лекарственных препаратов и т.д. Проведение независимых экспертиз конечно же возможно, но следует учитывать, что всесторонняя оценка пищевой безопасности одного ГМ-растения — мероприятие довольно затратное, продолжается год-полтора и требует наличия квалифицированного персонала из разных областей науки, соответствующего оборудования и т.д. Именно несоответствие методики экспериментов И. Ермаковой общепринятым международным протоколам по исследованиям на животных и явилось одной из причин, по которым эксперты не признали её результаты достоверными.
Переход к массовому использованию ГМО в сельском хозяйстве сулит огромные экономические выгоды, которые, естественно, вызывают позитивные социальные и политические эффекты. Поэтому «прорывные» программы (по типу «электрификации всей страны») весьма соблазнительны для правительств. 1. Каковы риски внедрения программ массового перехода к использованию ГМО в сельском хозяйстве? Отделите, пожалуйста, предполагаемые риски от доказанных. 2. Как вы оцениваете перспективы развития традиционных (селекционных) технологий, то есть согласны ли вы с тем, что это уже исчерпавшая себя «тупиковая ветвь эволюции»?
В. Кузнецов.Могут ли «прорывные» программы (по типу «электрификации всей страны») масштабного использования ГМО решить основные проблемы конкретного государства или общества в целом? Именно так ставился вопрос на пороге XXI века. В 2002 году одна из популярнейших российских газет поведала миру о том, что ГМ-продукты спасут человечество от голода; что ГМ-растения позволят решить энергетическую проблему на планете; что одна-две сотки земли дадут ГМ-вакцины для всей России и, наконец, что ГМ-растения позволят сохранить среду обитания.
Сейчас становится всё более очевидным, что активное использование ГМ-растений не является непременным условием процветания того или иного государства, прежде всего процветания экономического. Например, Аргентина, которая всё сельскохозяйственное производство сориентировала на ГМ-сорта растений, не может победить голод, тогда как страны Евросоюза практически не выращивают ГМ-растения, но обеспечивают высокий уровень жизни населения.
Можно выделить следующие основные агротехнические риски при выращивании ГМ-сортов: