Микроволновое бланширование
Преимущества микроволнового бланширования над конвективным бланшированием – минимизация нежелательных изменений во вкусе, текстуре, потерь питательных веществ и снижение количества отходов. К недостаткам микроволнового бланширования следует отнести неравномерность нагрева и трудность контролирования температуры во время бланширования.
Большинство микроволновых устройств наподобие домашним микроволновым печам используют многорежимный резонатор (колебания). Распределение напряженности поля в таких системах сложное. Однорежимные резонаторы имеют четко выраженное простое распределение напряженности поля, но их применение в пищевой промышленности ограничено. Причина – объем продукта должен быть очень маленьким для того, чтобы поддерживать резонанс. Спроектированы однорежимные микроволновые резонаторы для исследования термической инактивации полифенолоксидазы в грибах при промышленном бланшировании [18]. Обнаружено, что при микроволновом бланшировании полифенолоксидаза инактивируется за более короткое время, чем при конвективном бланшировании. Грибы, подверженные микроволновому бланшированию, имели более высокую концентрацию окислителей, и менее коричневую окраску.
Заключение
Микроволны напрямую взаимодействуют с продуктом, и тепло генерируется по всему объему. В дополнение к градиенту концентраций, градиент давлений играет значительную роль при перемещении влаги во время микроволнового нагрева. Кратковременная обработка во время микроволновой сушки, стерилизации и оттаивания более предпочтительна для снижения потерь, особенно для скоропортящихся продуктов. Однако, наблюдаются некоторые проблемы понижения качества в области выпечки хлебобулочных изделий, связанные с недостаточным временем для протекания некоторых биохимических реакций. Разработка новых рецептур или использование галогенных ламп в сочетании с микроволнами показали улучшение качества хлебобулочных изделий. Качество продукта и равномерность нагрева в различных микроволновых процессах может быть улучшено изменением конструкции печи, например, фазовый контроль нагревания, печи с различной частотностью, метод цикличной микроволновой энергии, использование непрерывной микроволновой энергии на низких уровнях или комбинирование микроволн с другими методами нагрева.
Новые методы, такие как магниторезонансная термическая томография, химические соединения (маркеры) и методы температурных индикаторов, которые используются для определения распределения температуры в пищевом продукте, могут быть полезны для широкого использования микроволновой пастеризации и стерилизации. Микроволны могут использоваться для определения влагосодержания продукта.
6.2 Радиочастотная обработка [11]
Радиочастотный нагрев – это форма диэлектрического нагревания, при которой тепло генерируется по всему объему продукта, как в случае микроволнового и омического нагрева. Продукт, подвергаемый нагреванию, помещается между плитами или электродами. Электрическая энергия рассеивается через тепловое сопротивление продукта (аналогично и при омическом нагреве). Например, высокочастотное поле может быть применено через горизонтальные электроды, между которыми проходит конвейерная лента с пищевыми продуктами (рисунок 6.4). В отличие от микроволнового нагрева, где продукт помещается в отражающее огороженное пространство и нагревается в значительной мере благодаря дипольному вращению. Радиочастотная радиация генерирует тепло благодаря электрическому сопротивлению продукта, но отличается от омического нагрева тем, что продукт не находится в прямом контакте с электродами, например, радиочастотные волны могут пропускаться через традиционную упаковку – пластик и картон. Радиочастотная обработка использует пониженные частоты, поэтому длины волн больше, чем при микроволновом нагреве (рисунок 6.1). Частоты, применяемые для промышленного нагрева: 13.56, 27.12 и 40.68 МГц по сравнению с 915 или 2450 МГц, используемых для микроволн.
Рисунок 6.4 – Радиочастотный нагрев [15].
Радиочастотный диэлектрический нагрев и/сушка используются много лет в деревообрабатывающей, текстильной и пищевой промышленности. Так как при диэлектрическом нагреве энергия переносится прямо к продукту, применение радиочастотного нагрева имеет ряд преимуществ по сравнению с конвективным способом (снижение времени и пространства, улучшение качества продукта и т.д.).
Хлебобулочные изделия, сухари и сухие завтраки с низкой жирностью должны быть высушены очень аккуратно, потому что высокая плотность теста делает их особо хрупкими. Для удаления последних 1-2% влаги иногда необходимо перегреть корочку, что может привести к повреждению, разламыванию и крошению поверхности. Радиочастотный нагрев вырабатывает электромагнитную энергию с длинами волн больше, чем при микроволновом нагреве. Данный вид нагрева нацелен на продукт, а не на воздух, окружающий продукт. Фактически, т.к. внутренняя часть продукта нагревается быстрее, чем его поверхность, радиочастотная обработка направлена на удаление влаги из внутренних слоев, выравнивая содержание влаги по всему продукту и избегая таким образом перегрева и обезвоживания поверхности продукта.