Пластичность и специфичность
Опыт — это термин из лексикона поведения. В переводе на язык биологии он означает пластичность. Для того чтобы эффективно функционировать, т. е. адекватно реагировать на окружающие условия, все живые организмы должны обладать двумя противоположными свойствами. Они должны сохранять стабильность (специфичность) в процессе развития и в зрелом возрасте, изо дня в день в течение всей жизни сопротивляясь непрерывному воздействию случайных изменений окружающей среды. Одновременно они должны быть пластичны, т. е. способны приспосабливаться и изменять свою специфичность по мере приобретения опыта. Если некогда биологи говорили об организме как продукте взаимодействия «природы и воспитания» (на современном языке — генов и окружающей среды), то теперь такое противопоставление считают слишком упрощенным, поскольку основой как специфичности, так и пластичности служит проявление генов в процессе развития индивидуума. Без генов, обеспечивающих формирование мозга, способного обучаться на опыте, мы не смогли бы выжить. Однако мы не выжили бы и без генов, определяющих правильную систему связей в нашем мозгу в период развития. Объяснить диалектику специфичности и пластичности и понимание ее механизмов — одна из главных задач современной биологии. Изменения, происходящие в мозгу в результате накопления опыта, представляют собой форму пластичности, а память — одно из важнейших отображений этого опыта. Таким образом, для понимания механизмов пластичности (памяти) необходимо понять механизмы специфичности. Если бы мозг не сохранял в основном стабильность, не расшатываемую опытом, мы не смогли бы жить, что и подтверждают судьбы Фунеса и Шерешевского. Упорядоченные изменения имеют смысл только на относительно неизменном фоне.
Для достижения стабильности в изменчивом мире необходимы стабильные системы узнавания и реагирования на этот мир, системы, в которых мозг играет ключевую роль. Специфичность — это качество, которое придает мозгу способность осмыслять окружающий мир, распознавать его неизменные черты и определенным образом реагировать на его закономерности. Без такой специфичности мы бы жили в состоянии постоянной неопределенности и смятения. Так, например, большую часть информации об окружающем мире мозг получает с помощью зрения, т. е. через глаза. Положение головы и глаз по отношению к этому миру все время меняется, и тем не менее мы устойчиво видим его и отдаем себе отчет о своем положении в трех его измерениях. Для этого необходимо, чтобы свет, падающий на сетчатку, весьма упорядочение и стабильно преобразовывался в сигналы, передающиеся в мозг и анализируемые в нем, причем эта упорядоченность должна сохраняться на протяжении всей жизни, несмотря на гибель клеток, замену молекул и запоминание множества событий, формирующих опыт.
Как это достигается? Сетчатка нашего глаза содержит более 110 миллионов светочувствительных клеток, и глаз соединен с мозгом нервным трактом, содержащим около миллиона нервных волокон. Поскольку количество клеток в сетчатке значительно больше числа связанных с ними волокон зрительного нерва, можно считать, что каждое волокно интегрирует информацию от многих индивидуальных клеток. Зрительные нервы оканчиваются глубоко в мозгу, в участках, называемых боковыми коленчатыми телами. Там они образуют синапсы с комплексом из многих миллионов нейронов, которые в свою очередь связаны с особым отделом коры (зрительной корой) системой проводящих путей, более или менее сходных у всех млекопитающих. Итак, зрительные сигналы, преобразованные сетчаткой в нервные импульсы, сначала концентрируются в зрительных нервах, а потом снова высвобождаются в боковом коленчатом теле. Для того чтобы мозг был способен интерпретировать изображения, поступающие на сетчатки глаз, зрительные пути должны быть определенным образом организованы и упорядочены. В самом деле, можно показать, что взаимное расположение элементов сетчатки совершенно точно воспроизводится на нейронах коленчатого тела, а последние точно так же проецируются на зрительную кору. Иными словами, в боковом коленчатом теле существует карта (проекция) сетчатки, а в зрительной коре — еще одна карта, хотя и несколько измененная, как изменен земной шар в двумерной проекции Меркатора на стене классной комнаты. На каждом уровне картирования — в сетчатке, коленчатом теле и зрительной коре — информация анализируется и классифицируется на сигналы о границах, углах, движении, длинах волны (цвете) и т.п. В коре картирование и классификация подчинены еще более сложным критериям, и здесь возникает та нервная активность, которую мы называем зрением или зрительным восприятием.
Упорядоченность картирования, классификации, анализа и, наконец, синтеза затрудняется еще и тем, что у млекопитающих, в том числе у человека, клеточная структура глаз и мозга быстро, но неравномерно изменяется в первые годы жизни. В результате картирование не имеет окончательного характера, функции, выполнявшиеся клетками после рождения, изменяются, а связи между ними не остаются постоянными на протяжении всей жизни: проводящие пути от глаза к мозгу подвержены непрерывной перестройке. Человек рождается зрячим, у него быстро развивается сфокусированное стереоскопическое зрение, и вскоре он уже узнает предметы, даже если видит их под разными углами, на разном расстоянии и при различном освещении. Для этого он должен иметь весьма стабильную систему связей между глазами и мозгом, а сами эти связи должны формироваться и перестраиваться в соответствии с определенной внутренней программой развития, относительно независимой от случайных изменений окружающей среды.
Как достигается такая стабильность, несмотря на значительные изменения размеров мозга, числа его клеток и индивидуального опыта в период развития? Имеется множество данных о том, что на ранних стадиях формирования мозга образуется огромный избыток синаптических связей, который затем постепенно уменьшается; излишние или вообще ненужные синапсы исчезают, а остальные каким-то образом стабилизируются. Процесс отмирания и стабилизации синапсов, видимо, служит одним из основных механизмов, с помощью которых опыт изменяет структуру мозга в ходе его формирования, а конкретные способы достижения такой стабильности (специфичности) стали одной из важных проблем нейробиологии развития. В самом деле, диалектическая связь между специфичностью и пластичностью настолько тесна, что в конце концов невозможно будет понять каждый из этих феноменов отдельно от другого [1].
Упорядоченность и неизменность окружающей среды относительны: среда тоже подвержена краткосрочным и долговременным изменениям. Организмы, а значит и их мозг, должны уметь приспосабливаться к таким изменениям. Отсюда и пластичность, подразумевающая способность к адаптации. Правда, в нейробиологической литературе этот термин используется в весьма неопределенном смысле. Если в период развития молодой особи не хватает важнейших гормонов: гормонов щитовидной железы, эстрогенов или тестостерона, развитие нервных связей в некоторых участках мозга нарушается. Недостаток пищи или другие неблагоприятные условия в период развития могут привести к уменьшению размеров мозга. Все это примеры пластичности, однако этот термин часто используется также для обозначения способности нервной системы взрослого организма восстанавливаться после травмы путем формирования новых связей или благодаря тому, что неповрежденная часть мозга принимает на себя функции травмированной области.