Все живые организмы должны быть единством фенотипа и программы для его построения (генотипа), передающегося по наследству из поколения в поколение. 5 страница
Остальные 61 триплет (кодон) соответствуют 20 аминокислотам. Такой код, когда несколько букв читаются одинаково, называется вырожденным. Например, лейцин, серин и аргинин кодируются шестью триплетами; пролин, валин и глицин – четырьмя; изолейцин – тремя; аспарагиновая и глутаминовая кислоты – двумя, а для метионина имеется лишь один кодон. Он же, если стоит в начале гена, исполняет роль заглавной буквы.
Это похоже на ситуацию в дореволюционном русском алфавите: тогда существовало два символа для звука «ф» (ферт и фита) и целых три для «и» («и» просто, «и» с точкой и ижица).
Первые исследователи полагали, что аминокислотные цепочки прямо собираются на нуклеотидных цепочках. Дело оказалось гораздо сложнее.
Во‑первых, нет никакого стерического (морфологического) соответствия между кодоном и той аминокислотой, которую он кодирует. Соответствие между ним и достигается молекулой особой нуклеиновой кислоты, которую называли по‑разному: РНК – посредник, адаптор, растворимая и, наконец, транспортная. На одном ее конце присоединена аминокислота, а на другом расположена последовательность комплементарная кодону (антикодон).
Во‑вторых, матрицей для белкового синтеза служит не непосредственно ДНК, а копируемый с нее «рабочий чертеж» – РНК, получившая название информационной или матричной (мРНК).
Итак, мы должны различать процессы: матрицирование самого гена, то есть синтез ДНК на ДНК, синтез мРНК на ДНК и синтез белка на матрице мРНК. Первый процесс называется репликацией, второй – транскрипцией и третий – трансляцией.
Еще короче это выражается в так называемой «центральной догме» молекулярной биологии:
В предисловии я обещал строго придерживаться того набора фактов, которого требует школьная программа. Однако некоторые положения в ней излагаются слишком сжато, иные неверно, а многие любопытные достижения последних лет просто еще не дошли до учебников. Теперь самое время на них остановиться.
Полярность гена. Длинные цепочечные молекулы биополимеров – полипептидов и нуклеиновых кислот – полярны. Иными словами начало и конец цепи аминокислотных остатков и нуклеотидов различаются друг от друга.
Рис. 15. Схема строения двухцепочечной ДНК и комплементарной ей РНК. Для простоты ДНК показана не закрученной в спираль, какой она обычно бывает в клетке. Такой участок может кодировать две аминокислоты – серин и цистеин. Ф – остаток фосфорной кислоты, А, Г, Ц, Т, У соответственно аденин, гуанин, цитозин, тимин, и урацил. Нетрудно видеть что смысловая цепь и комплементарная ей антипараллельны. 3’– конец одной стыкуется с 5’‑концом другой. Синтез матричной РНК начинается 3’– конца смысловой цепи. Следовательно мРНК Нужно «читать» с 5’‑конца. С него и начинается белковый синтез. Нагляднее принцип антипараллельности цепей дан на шуточной схеме внизу. Теперь представим себе, что обе нарисованные внизу змеи свернутся в кольцо и каждая возьмет в зубы собственный хвост, и мы получим точную копию кольцевой хромосомы некоторых фагов и бактерий.
Нетрудно сообразить, почему полярны полипептиды, слагающие белки. Уже упоминалось, что аминокислоты имеют две функциональные группировки, сшивающие их в полипептид, – аминную и карбоксильную. Значит, у первого звена аминокислотной последовательности остается свободной аминная группа (–NH2), а у последнего – карбоксильная (–COOH). Так и говорят: N– конец и C– конец полипептида.
Полярны и нуклеиновые кислоты, но по другой причине. Остов как РНК, так и ДНК –пятичленные сахара – пентозы, сшитые остатками фосфорной кислоты (фосфодиэфирные связи). Чтобы различать атомы углерода в пятиугольнике пентозы, химики пронумеровали их, считая от того, к которому присоединено азотистое основание. Оказалось, что в природных нуклеиновых кислотах фосфодиэфирные связи образуются только между третьими и пятыми атомами углерода в пентозах (сокращенно: 3’ и 5’; читается: «три‑штрих» и «пять‑штрих»). Поэтому на одном конце любой нуклеиновой кислоты сахар присоединен к цепи 3’‑атомом, на другом – 5’.
А теперь зададимся вопросом: в какую сторону «читается» ген – к 3’ или 5’? Теперь, когда генные инженеры уверенно расшифровывают нуклеотидные последовательности и синтезируют их, это вопрос отнюдь не праздный.
Рис. 17. Упрощенная схема передачи генетической информации с ДНК на белок. С находящейся в ядре ДНК снимается «рабочая копия» гена – гетерогенная ядерная РНК (этот процесс называется транскрипцией). Значительная, как правило, большая ее часть не кодирует аминокислотных последовательностей и отрезается ферментами – эндонуклеазами и отбрасывается. Тогда же вырезаются и «нечитаемые» вставки – интроны. Созревшая мРНК, получившая «шапочку» (cap – англ.) на 5’‑конце и полиадениловую последовательность на З’‑конце, через пору в ядерной оболочке выходит в цитоплазму (часто в виде комплексов с белком – информофер или информосом, на рисунке не показанных). В цитоплазме информация считывается с мРНК белоксинтезирующими аппаратами клетки – рибосомами (трансляция). Рибосомы гуськом идут по мРНК: каждый раз, когда рибосома смещается на три нуклеотида к З’‑концу, к растущей полипептидной цепи прибавляется один аминокислотный остаток. Аминокислоты доставляются к рибосомам молекулами транспортной РНК (мРНК). Отдав аминокислоту, мРНК образует снова комплекс (аминоацил – мРНК) с другой и снова вовлекается в процесс. Полипептидная цепочка, оборвавшись на бессмысленном, терминирующем кодоне, свертывается специфичным образом. Это вторичная структура белка, поддерживаемая водородными связями; обычно это однонитчатая спираль (спираль Полинга – Кори). Спираль, в свою очередь, складывается, образуя третичную структуру. Наконец, многие белки состоят из более чем одной полипептидной цепи. Таков, например, гемоглобин, молекула которого состоит из четырех субъединиц. Это четвертичная структура.
Установлено, что полипептидные цепи в клетках синтезируются от N– конца к C– концу. Значит, у матричной РНК начало там, где кодируется N ‑ конец. Оно соответствует 5’‑концу РНК. В двойной спирали ДНК разобраться труднее. Дело в том, что слагающие ее нуклеотидные цепочки направлены в разные стороны, как говорят, антипараллельны. Иными словами, одна цепь направлена в сторону З’–5’, а другая 5’–З’.
Смысловая цепь, в которой закодирована аминокислотная последовательность «считывается» ферментом РНК‑полимеразой с З’‑конца. Образующаяся при этом мРНК, естественно, оказывается точным аналогом комплементарной цепи и будет начинаться с 5’‑конца, с того, с которого начинается трансляция, то есть белковый синтез.
Но ведь с гена снимается не только «рабочий чертеж» мРНК. Ген и реплицируется, передаваясь из поколения в поколение, от матричной клетки к дочерним. Осуществляет этот процесс – репликацию – фермент ДНК полимераза.
Считается, что молекула ДНК‑полимеразы садится на ДНК и движется по ней. При этом удваивается и смысловая цепь, и комплементарная к ней. Значит репликация смысловой цепи начинается с 3’‑конца, как и транскрипция. Это аналогично тому как если бы мы перепечатывали текст с конца, а читали его, как и водится, с начала. В учебниках и популярных изданиях на это, как правило, не обращают внимания.
Последние годы ознаменовались сенсационными открытиями в изучении процессов репликации и трансляции. Природа подносила нам сюрприз каждый раз, когда начинало казаться, что уж теперь мы знаем об этих явлениях все.
Вот некоторые из сенсаций, за молодостью не попавшие в учебники.
Справедлива ли центральная догма? Мы уже упоминали, что генетическая информация передается от ДНК через РНК на белок, но не в обратную сторону. Это положение назвали центральной догмой молекулярной биологии. РНК‑содержащие вирусы ее не нарушают. Просто у них выпадает начальное звено этой цели – ДНК. Генетическая информация передается из поколения в поколение закодированной в последовательностях РНК, с них же и считывается белок.
В принципе разница между ДНК и РНК не так уж и велика. Пентознофосфатный остов у РНК образует другой сахар – рибоза, который отличается от дезоксирибозы лишь наличием гидроксильной группы (OH). Набор оснований тот же, за тем исключением, что вместо тимина (5‑метилурацила) в РНК содержится урацил (тот же тимин, только неметилированный). Недаром в природе встречаются ДНК, в состав которых входят и дезоксирибозы и рибозы. Такова, например, ДНК вируса герпеса, от которого на губах «высыпает лихорадка». Энергетические фабрики клеток – митохондрии – в значительной степени генетически автономны от ядра, они имеют свой геном, похожий на бактериальный. ДНК этого генома также содержит рибозу – от десяти до тридцати остатков на молекулу.
Все это не нарушало стройную догму. Тем большее смятение вызвало открытие синтеза ДНК на РНК. С. М. Гершензон писал еще в 1960 году о возможности подобного процесса, однако лишь сравнительно недавно был получен в значительных количествах фермент ревертаза (обратная транскриптаза), осуществляющий эту реакцию. Теперь этот фермент – обычный инструмент генных инженеров. Теперь мы можем дополнить центральную догму:
Например, РНК‑содержащий вирус птичьего миэлобластоза может в результате обратной транскрипции стать ДНК‑содержащим, встроиться в геном цыпленка и вызвать злокачественное перерождение клеток. Какую роль играет синтез ДНК на нити РНК в мире высших организмов, нам пока еще неизвестно.
Смысловая цепь: одна или две? Каких‑нибудь пять лет назад все мы были твердо уверены, что матричная РНК синтезируется только на одной из двух цепей ДНК, получившей название смысловой. Вторая, комплементарная ей цепь нужна лишь для репликации ДНК и репарации – «починки» поврежденных участков. Если, например, жесткая радиация вырвет кусок из одной из цепей двойной спирали, специальные ферменты – репаразы заполняют брешь, пристроив на ее месте последовательность нуклеотидов, комплементарную оставшейся.
И тем не менее в последнее время появились данные, свидетельствующие о том, что в геноме дрозофилы, например, синтез РНК может идти на обеих цепях ДНК. Это так называемый симметричный синтез. Любопытно, что он идет от одной точки в разные стороны: в каждой цепи от З’ к 5’‑концу, так что обе образующиеся РНК начинаются с 5’‑конца. Биологический смысл этого явления мы еще не знаем.
Рис. 18. Вверху – первичная структура белка лизоцима, разрушающего оболочки бактерий. Обратите внимание на четыре сшивки цис – цис (дисульфидные связи, которые мы уже видели на рис. 3). Внизу же не абстрактная скульптура, а модель третичной скульптуры лизоцима, полученная методом рассеивания рентгеновских лучей.
Перекрывается ли код? Первые гипотетические модели кода были перекрывающимися Это значило, что последовательность нуклеотидов могла кодировать разные аминокислотные последовательности, в зависимости от начала считывания. Так, последовательность АТТГЦАТЦГ, если считывалась бы с А, кодировала бы Тир–Вал–Ала, если со второго нуклеотида (Т)–Вал–Ала–Мет, и т. д. Подобный код накладывал бы жесткие ограничения на последовательность аминокислот в белках. И все облегченно вздохнули, когда С. Бреннер доказал, что каждый триплет нуклеотидов в ДНК и РНК считывается только один раз (неперекрывающийся код).
И опять как гром с ясного неба. Оказалось, что у некоторых фагов гены перекрываются. У фага φX174имеется двойное перекрытие, у фага G4даже тройное, то есть с одной нуклеотидной последовательности считываются три аминокислотных! Это предел экономичности сигнала. Фагам хорошо, а вот каково молекулярным генетикам? Как широко распространен этот феномен в мире вирусов? Встречается ли он у высших организмов? Не знаем.
Но самое интересное из новых открытий я приберег под конец.
Конец коллинеарности гена. До последних лет все согласно считали, что ген коллинеарен тому белку, точнее, той полипептидной цепи, которую он кодирует. Иными словами, каждой тройке нуклеотидов в ДНК, с которой считывается мРНК, соответствует один аминокислотиый остаток в полипептиде.
И опять оказалось не так! В смысловой цепи ДНК, кодирующей белок, обнаружены довольно длинные вставки (интроны), никаких аминокислот не кодирующие. Они считываются при синтезе первичного транскрипта, а далее начинается непонятный процесс. Ненужные вставки вырезаются специальными ферментами и отбрасываются, остатки сшиваются. Этот процесс называется сплэйсингом (калька с английского) Я не знал этого слова, но понял значение сразу, вспомнив свою давнюю морскую практику: сплеснивать трос – значит сращивать его из кусков.
После того как все ненужное из первичного транскрипта удалено, к 5’‑концу присоединяется «шапочка» – три фосфатных остатка подряд и метилированный нуклеотид. А у 3’‑конца вырастает длинный полиадениловый «хвост» – последовательность из многих остатков аденина. Для чего эти добавки – недавно выяснили. Белоксинтезирующие системы клетки – рибосомы – «узнают Сеньку по шапке». 5’‑конец, с которого начинается трансляция, по начальным трем фосфатам. Последовательность поли‑А придает матричной РНК стабильность, она не так быстро разрушается нуклеазами. Это было показано серией изящных опытов. Так как генетический код един для всего органического мира, можно ввести в клетку чужеродную мРНК и синтезировать совсем другой белок. Этим путем удалось синтезировать в незрелых яйцеклетках шпорцевой лягушки гемоглобин кролика, белки вируса табачной мозаики и пчелиного яда. И каждый раз мРНК, лишенная поли‑А последовательности, была нестабильной, распадалась быстро.
А вот для чего гену интроны? На этот счет было высказано немало соображений, вплоть до самых фантастичных: они нужны будто бы для обеспечения процесса эволюции (!). Но ни в одном организме нет ни одной структуры, специально предназначенной для эволюции. Все структуры предназначены только для выживания. Если мы признаем за интронами роль своеобразных органов эволюции, мы наделим природу способностью к прогнозированию и вернемся фактически к учению Аристотеля о будущей причине. Впору подивиться живучести телеологических заблуждений, уже третью тысячу лет воскресающих под разными именами.
А то, что интроны для чего‑то нужны не в будущем, а сейчас, ясно из следующего примера. Всем хорошо известный белок инсулин – один из самых маленьких, в нем всего 50 аминокислот. Значит, его ген состоит из 150 нуклеотидов. У крысы два гена инсулина, обозначаемых, как Аи В. Оказалось, что в гене Аесть один интрон – нечитаемая вставка в 119 нуклеотидов, а в гене Вк нему прибавляется другой – в 444 нуклеотида! Из 713 нуклеотидов в процесс трансляции вовлекается только 150 –комментарии излишни.
Не найдем ли мы какой‑либо аналогии в человеческих языках? Действительно, во многих языках орфография сильно отличается от произношения. Вот примеры, заимствованные мною у Л. В. Успенского: 1) английское «дочь» пишется daughterчитается – «дотэ», 2) ирландское «дочь» – пишется kathudhadhчитается «кахю», 3) французское «вода» пишется читается «л’о».
«Лишние», непроизносимые буквы в словах – аналоги интронов в генах. Это объясняется обычно тем, что орфография отстает от произношения и люди пишут так, как говорили несколько веков назад. А то и десятилетий: Анатоль Франс вспоминает бабушку, которая упорно выговаривала «кошемар», «булевар». Да, но почему орфография в одних языках отстает от произношения сильно, а в других за ним поспевает? Почему французское правописание консервативней русского (хотя и мы, особенно в быстрой речи, выговариваем, например, «ПалВаныч» вместо «Павел Иванович»)? Консервативность орфографии не случайна. Она достигает предела в тех языках, где много омонимов – слов с разным значением, но произносимых одинаково.
Во французском языке таких слов очень много, он как бы создан для каламбуров. Но то, что оживляет устную речь, может создать помехи при чтении письменного текста. Так что не будь французская орфография консервативной, французам пришлось бы эту консервативность выдумать.
И не случайно иероглифическая письменность упорно держится Китае. Китайский язык весь состоит из омонимов. В устной речи они распознаются по тону, а как с чтением?
А теперь вернемся к нашим интронам. Регуляторные механизма белкового синтеза, к разгадке которых мы только сейчас приступаем должны как‑то «угадывать», «узнавать»[6]нужные гены, чтобы транскрибировать нужную мРНК и затем транслировать нужный белок. Немного пользы организму, если ген гемоглобина будет задействован в нервной клетке, а ген пепсина (пищеварительного фермента) в – мышцах. Генетическая программа не признает омонимов, каламбуры здесь строжайше противопоказаны. Язык генома жестко однозначен, как машинные языки ФОРТРАН или АЛГОЛ, в нем нет места недосказанности размытости значения метафоричности – короче тех особенностей человеческих языков, без которых была бы невозможной изящная словесность. Хромосома ведет себя, как та электронная вычислительная машина которая библейское изречение «Плоть немощна но дух бодр» перевела с английского (The spirit is saund, but the flesh is weak ) на русский как «Водка крепкая, но мясо размякло».
Поэтому в гене должна содержаться не только информация об аминокислотных последовательностях. Там должны быть участки, по которым регуляторные элементы клетки его узнают Ясно также, что из окончательной нуклеотидной последовательности мРНК они, как сделавшие свое дело, должны быть удалены. Такими участками и могут оказаться интроны. Это только гипотеза, но на сегодняшний день она наиболее вероятна.
И в заключение рассмотрим важный вопрос: достаточно ли в клетке ДНК для кодирования всех структур сложного фенотипа?
По этому поводу еще недавно велись дискуссии. Казалось, что ДНК явно не хватает. Однако попробуем определить объем генетической информации, как это делал Джон фон Нейман, в битах. Вспомним слова великого физика лорда Кельвина: «Если Вы можете измерить то, о чем говорите, и выразить это в числах, то Вы что‑то знаете об этом предмете; если же Вы не в состоянии ни измерить, ни выразить это в числах, то Ваши знания предмета скудны и неудовлетворительны».
Вот схема простенького расчета, когда‑то мною проделанного. Если бы все основания в ДНК встречались в одинаковом количестве, вероятность встречи каждого из них была бы 0,25.
Отсюда информационная ценность каждого из оснований
H= – (4 • 0,25 log 2 0.25) = 2 бита.
Однако ДНК в геноме неоднородна по составу. Для высших организмов, например позвоночных животных, доля пары гуанин – цитозин составляет всего около 40 процентов. Кроме того, в ней имеются фракции, обогащенные парами АТ и ГЦ. У некоторых крабов в хромосомах выявлены последовательности состоящие только из двух оснований А и Т. Информационная ценность нуклеотидного звена в них снижается вдвое:
H= – (2 • 0,25 log 2 0.25) = 1 бит.
то есть основание может быть только или аденином или же тимином.
Оценить неоднородность ДНК в геноме можно простым опытом. Если мы будем повышать температуру раствора ДНК, то на каком‑то уровне средняя кинетическая энергия молекул окажется выше энергии водородных связей, которыми скреплены половинки двойной спирали. Температура, при которой распадается (денатурирует) половина молекул ДНК, называется температурой плавления. Она сильно зависит от концентрации катионов в растворе (примерно прямо пропорциональна логарифму их концентрации). В паре ГЦ три водородные связи, в паре АТ только две. Поэтому чем больше ГЦ в ДНК, тем более она «тугоплавка». Отсюда следует, что по ширине интервала температур, в котором ДНК плавится, можно судить о ее неоднородности (гетерогенности) в геноме.
Расчет дал около 1,9 бита на основание даже для гетерогенной ДНК млекопитающего (теленка). А число нуклеотидов в геноме млекопитающего около двух‑трех миллиардов (у человека два миллиарда, а у буйвола на 40 процентов больше; видно, дело не в количестве). Значит, запас информации в ДНК млекопитающего 4–6 миллиардов бит, что соответствует библиотеке в полторы‑две тысячи томов.
Не забудьте, что этот запас содержится в яйцеклетке или головке спермия, имеющей микронные размеры. Какова свертка информации! Сказочный джинн, вылетая из бутылки, вырастает всего‑навсего выше финиковой пальмы. Насколько действительность фантастичнее волшебной сказки!
Достаточно ли такого массива информации для постройки фенотипа? Задавшись таким вопросом, ученые спохватились: ведь мы же не умеем оценить сложность фенотипа количественно. В принципе любую структуру, в том числе структуру организма, можно описать с весьма высокой точностью (предел здесь накладывает так называемая квантовомеханическая неопределенность, о которой у нас речь пойдет в следующей главе). Представим, что мы разрежем организм на серию последовательных идущих друг за другом срезов. Расположение структур на каждом из срезов можно описать в двумерной системе координат и выразить объем этой информации в битах. Детальность описания зависит от толщины среза.
Допустим, толщина среза у нас будет один ангстрем (10–10м) – это величина, близкая к пределу разрешающей способности лучших современных электронных микроскопов. Но тогда, скажем, для описания фенотипа человека ростом в 180 сантиметров придется сделать и описать 18 миллиардов таких срезов!
Ясно, что таких опытов никто не проделывал. Все подобные эксперименты оставались мысленными. Структуру поменьше и с меньшим уровнем разрешения, например бактериальную клетку или митохондрию, так описать можно. Увеличивая толщину срезов, скажем, в сто или тысячу раз, мы можем дать описания, но в сто или тысячу раз менее детальные.
А величинам, полученным в результате мысленных экспериментов и приближенных расчетов, как‑то не хочется верить. Все это попросту среднепотолочные цифры. Фенотипическую информацию организма человека оценивали и в 105и в 1025бит. Та же величина для бактерии, по данным разных авторов, колеблется от 104до 1012бит!
Но в теории информации существует правило (закон Шеннона): при передаче по любому каналу информация может только теряться за счет помех, но не увеличиваться. Значит, информация, потребная для описания структуры «человек», не должна превышать четырех миллиардов бит.
Вернее, она должна быть существенно меньше. Если в канале информации есть помехи (а они есть в любом канале), информация генотипа должна быть избыточной, многократно повторяться, иметь механизмы коррекции, устранения помех. Впервые я это очень наглядно понял, слушая переговоры по радиотелефону двух судовых радистов: «Аметист, Аметист, я 4347, я 4347, как меня слышите, прием, прием» – «4347, 4347, я Аметист, слышу вас хорошо, слышу вас хорошо, прием, прием».
Ответ не совсем точен: слышали мы хорошо, но из‑за треска в динамике понимали плохо.
Примерно так обстоит дело и в канале информации «от ДНК к признакам организма»: не будь генетическая информация высокоизбыточной, новое поколение из‑за случайных помех в развитии не походило бы на родителей, получался бы «не мышонок, не лягушка, а неведома зверюшка».
Рис. 19. Пятерня однояйцевых близнецов (сестры Дионн) в день пятилетия. По особенностям симметрии удалось восстановить их историю до рождения. Оплодотворенная яйцеклетка разделилась на два бластомера, которые разошлись и стали делиться самостоятельно. Из одного получились Ивонна и Анна, из другого Цецилия и еще один бластомер, который, разделившись, дал Марию и Эмилию. В результате получилось пять зародышей с абсолютно идентичными генетическими программами. Насколько полно сходство фенотипов при тождестве генетических программ, вы можете убедиться сами, глядя на лица этих девочек.
Но мы‑то знаем, как удивительно точно черты родителей проявляются в потомстве. Еще более разительный пример точности передачи генетической информации – однояйцевые близнецы, братья и сестры, развившиеся из одной разделившейся яйцеклетки. У них идентичные наборы генов, поэтому только у близнецов удаются пересадки тканей и органов, их путают даже хорошие знакомые и не могут различить по запаху собаки.
Рис. 20. В мире нет двух людей с одинаковыми отпечатками пальцев. На этом и основана большая область криминалистики – дактилоскопия. Но нет правил без исключений. Я думаю, даже Шерлок Холмс не смог бы различить отпечатки пальцев однояйцевых близнецов (I и II на рисунке). Как вы видите, даже столь, казалось бы, маловажная структура, как дактилоскопический узор, весьма жестко детерминирована генетически.
Значит, информация, заключенная в генотипе, избыточна. Один из механизмов мы знаем: это двойной набор хромосом в оплодотворенной яйцеклетке. В принципе развитие нормального фенотипа может быть обеспечено половинным, гаплоидным набором хромосом. Случаи партеногенеза, развития неоплодотворенной яйцеклетки, известны у многих животных и растений.
Отсюда следует, что объем информации, закодированный в генотипе, надо уменьшить вдвое. Эти соображения и заставили многих исследователей искать другие источники генетической информации, помимо ДНК.
Эмбриолог Х. Равен, о котором мы уже упоминали, выдвинул предположение, что, помимо ядерной ДНК, хранилищем информации может быть приповерхностный, так называемый кортикальный, слой яйцеклетки. Эта гипотеза не подтвердилась. Не следует забывать, что хранители наследственной информации – гены – должны размножаться, реплицироваться. В противном случае количество их в клетке будет уменьшаться вдвое с каждым делением. Из всех известных нам соединений только нуклеиновые кислоты обладают способностью к репликации. Те клеточные структуры, которые могут размножаться, например энергетические станции клетки, митохондрии и хлорофилловые зерна растений, хлоропласты, имеют свои, автономные геномы, очень похожие на простые бактериальные. Ядру они помочь не могут, хоть бы самим воспроизвестись с минимальной помощью от ядра.
Попробуем подойти к этому вопросу иначе: а правильно ли мы оценили сложность фенотипа?
Рис. 27. Согласно наиболее распространенной гипотезе, многоклеточные животные произошли от колоний одноклеточных. Сверхорганизмы высшего порядка возникают из колоний многоклеточных, в которых каждый организм выполняет определенную функцию. Таковы колониальные кишечнополостные – сифонофоры. На рисунке наверху: сифонофоры из группы сифонант. Верхние особи них превратились в подобие плавательных пузырей, удерживающих колонию в плавучем состоянии. Другие особи выполняют функции движения, питания и защиты колонии, а часть приспособлена для размножения. Сифонофоры‑дисконанты настолько далеко зашли по этому пути, что многие ученые отказываются считать их колонией и относят к единичным гидроидным полипам. Внизу: представитель этой группы – парусник велелла (сектор тела вырезан, чтобы показать сложное строение). Здесь также действует общий принцип – совокупность одинаковых элементов, представляющая информационную систему с высокой избыточностью, превращается в более сложную за счет снижения избыточности.
Тот же Равен указывает, что, например, у лошади несколько миллионов печеночных клеток и все они построены одинаково. Можно конечно, определить объем информации, потребный для описания каждой из клеток, а потом умножить число бит на число клеток. Но не равносильно ли это утверждению, что для полного тиража скажем, журнала «Наука и жизнь» требуется авторов, редакторов, корректоров, художников, фотографов и т. д. в три миллиона раз больше, чем для сигнального экземпляра?
Значит, структура фенотипа также информационно избыточна, причем в весьма высокой степени. Генотип может дать подробное описание лишь одной клетки, а затем указать, что она должна повториться сотни тысяч и миллионы раз.