Единая калибровочная природа
Различных типов физических
Взаимодействий
Калибровочный принцип называют динамическим нововведением в общей теории относительности. Нововведением является тот факт, что гравитационное поле здесь не постулируется, а выводится как результат инвариантности (симметрии) лагранжиана теории относительно группы локальных калибровочных преобразований. То есть требование симметрии порождает определенный конкретный вид взаимодействия, в данном случае — гравитационного. А это уже принципиально новый подход в физике. Благодаря ему современная физика отошла от исторической традиции, согласно которой заранее давалась форма взаимодействий, установленная экспериментально и теоретически описанная. Форма взаимодействий более не постулируется, а выводится как результат инвариантности относительно групп определенных локальных преобразований, как способ, которым в природе должно компенсироваться локальное калибровочное преобразование. И неважно, какие виды симметрии обусловливают эти взаимодействия. В каждом случае теории, в которых работает указанный принцип, называют калибровочными. Иными словами, калибровочная инвариантность позволяет ответить на вопрос: «Почему и зачем в природе существуют такого рода взаимодействия?» Ибо тип взаимодействия диктуется симметрией.
Оказывается, что все известные четыре типа взаимодействий — гравитационное, электромагнитное, сильное и слабое — имеют калибровочную природу и описываются калибровочными симметриями. То есть все взаимодействия как бы сделаны «из одной болванки». Это вселяет надежду, что можно будет найти «единственный ключ ко всем известным замкам» и описать эволюцию Вселенной из состояния, представленного единым суперсимметричным суперполем, из состояния, в котором различия между типами взаимодействий, между всевозможными частицами вещества и квантами полей еще не проявлены.
46. Спонтанное нарушение симметриивакуума
Идея спонтанного нарушения симметрии исходного вакуума вошла в физику элементарных частиц из физики твердого тела. Эта идея оказалась нитью Ариадны, которая привела из запутанных лабиринтов к созданию единой теории электромагнитного и слабого взаимодействий. Теория слабого взаимодействия была создана не сама по себе, а оказалась вписанной в единую электрослабую теорию. В настоящее время теория электрослабого взаимодействия подтверждена экспериментально. Идея спонтанного нарушения симметрии исходного вакуума означает отход от общепринятого представления о вакууме как о состоянии, в котором среднее значение энергии всех физических полей равно 0. Здесь признается возможность существования состояний с наименьшей энергией при отличном от нуля значении некоторых физических полей, возникает представление о существовании вакуумных конденсатов — состояний с отличным от нуля вакуумным средним. Спонтанное нарушение симметрии означает, что при определенных макроусловиях фундаментальные симметрии оказываются в состоянии неустойчивости. Платой за устойчивое состояние системы является асимметричность вакуума.
Таким образом, в физику с использованием калибровочного принципа вкупе с идеей спонтанного нарушения симметрии вакуума в качестве основного методологического принципа входит принцип рассмотрения физических явлений и процессов сквозь призму диалектики симметрии и асимметрии. Ибо здесь ясно просматривается диалектическое тождество этих противоположностей, когда симметрия содержит в себе в виде возможности асимметрию, а асимметрия зиждется на симметрии.
В 1967 г. С.Вайнбергом и А.Саламом была применена идея спонтанного нарушения симметрии для построения единой теории электрослабых взаимодействий с массивными W+, W‾, Z°- бозонамии безмассовым фотоном у. Предполагается существование такого этапа в эволюции Вселенной, когда не существовало различий между электромагнитными и слабыми взаимодействиями. Однако последующее расширение Вселенной привело к нарушению симметрии электрослабого взаимодействия до симметрии, отвечающей электромагнитному взаимодействию, и симметрии, отвечающей слабому взаимодействию. Так что в настоящую эпоху симметрия между этими типами взаимодействий оказывается скрытой, что обнаруживается нами как различие между электромагнитным и слабым взаимодействиями. Эксперименты в 1983 г. на ускорителе в ЦЕРНе (Европейская организация ядерных исследований в Женеве) по обнаружению W+, W‾, Z°-, бозонов результаты которых оказались в полном соответствии с предсказаниями теории, дали подтверждение правильности стратегической линии использования идей калибровочной симметрии в единстве с представлением о спонтанно нарушенной симметрии вакуума и явились косвенным подтверждением существования вакуумных хиггсовых конденсатов. Успех этот стимулирует физиков в направлении поисков адекватной симметрии, объединяющей сильное и электрослабое взаимодействие, (Великое объединение) и симметрии, объединяющей Великое объединение и гравитационное (Суперобъединение).
47. Концепция вакуума в структуре