Дробление .Гаструляция
Внезародышевые органы
Часть бластомеров и клеток после дробления зиготы идет на образование органов, способствующих развитию зародыша и плода. Такие органы и называются внезародышевыми.
После рождения некоторые внезародышевые органы отторгаются, другие на последних этапах эмбриогенеза подвергаются обратному развитию или перестраиваются. У разных животных развивается неодинаковое количество провизорных органов, отличающихся по строению и по выполняемым функциям.
У млекопитающих, в том числе и у человека, развиваются четыре внезародышевых органа:
1) хорион;
2) амнион;
3) желточный мешок;
4) аллантоис.
Хорион (или ворсинчатая оболочка) выполняет защитную и трофическую функции. Часть хориона (ворсинчатый хорион) внедряется в слизистую оболочку матки и входит в состав плаценты, которую иногда рассматривают как самостоятельный орган.
Амнион (или водная оболочка) образуется только у наземных животных. Клетки амниона продуцируют амниотическую жидкость (околоплодные воды), в которой и развивается эмбрион, а затем – плод.
После рождения ребенка хориальная и амниотическая оболочки отторгаются.
Желточный мешок развивается в наибольшей степени у зародышей, образующихся из полилецитальных клеток, и потому содержит много желтка, откуда и происходит его название. Желточный меток выполняет следующие функции:
1) трофическую (за счет трофического включения (желтка) обеспечивается питание зародыша, особенно развивающегося в яйце, на более поздних стадиях развития для доставки трофического материала к зародышу формируется желточный круг кровообращения);
2) кроветворную (в стенке желточного мешка (в мезенхиме) образуются первые клетки крови, которые затем мигрируют в кроветворные органы зародыша);
3) гонобластическую (в стенке желточного мешка (в энтодерме) образуются первичные половые клетки (гонобласты), которые затем мигрируют в закладки половых желез зародыша).
Аллантоис – слепое выпячивание каудального конца кишечной трубки, окруженное внезародышевой мезенхимой. У животных, развивающихся в яйце, аллантоис достигает большого развития и выполняет функцию резервуара для продуктов обмена зародыша (главным образом мочевины). Именно поэтому аллантоис нередко называю мочевым мешком.
У млекопитающих необходимость в накоплении продуктов обмена отсутствует, так как они поступают через маточно-плацентарный кровоток в организм матери и выводятся ее экскреторными органами. Поэтому у таких животных и человека аллантоис развит слабо и выполняет другие функции: в его стенке развиваются пупочные сосуды, которые разветвляются в плаценте и благодаря которым формируется плацентарный круг кровообращения.
Дробление .Гаструляция
Период дробления . Дробление у человека полное, неравномерное, асинхронное. Бластомеры неравной величины и подразделяются на два типа: темные крупные и светлые мелкие. Крупные бластомеры дробятся реже, располагаются о центре и составляют эмбриобласт. Мелкие бластомеры чаще дробятся, располагаются по периферии от эмбриобласта и в дальнейшем формируют трофобласт.
Первое дробление начинается примерно через 30 ч после оплодотворения. Плоскость первого деления проходит через область направительных телец. Поскольку желток в зиготе распределен равномерно, выделение анимального и вегетативных полюсов крайне затруднено. Область отделения направительных телец обычно называют анимальным полюсом. После первого дробления образуются два бластомера, несколько различных по величине.
Второе дробление. Образование второго митотического веретена в каждом из образовавшихся бластомеров происходит вскоре после окончания первого деления, плоскость второго деления проходит перпендикулярно плоскости первого дробления. При этом концептус переходит в стадию 4 бластомеров. Однако дробление у человека асинхронное, поэтому в течение некоторого времени можно наблюдать 3-х клеточный концептус. На стадии 4 бластомеров синтезируются все основные виды РНК.
Третье дробление. На этой стадии асинхронность дробления проявляется в большей мере, в итоге образуется концептус с различным количеством бластомеров, при этом условно его можно разделить на 8 бластомеров. До этого бластомеры расположены рыхло, но вскоре концептус уплотняется, поверхность соприкосновения бластомеров увеличивается, объем межклеточного пространства уменьшается. В результате этого наблюдаются сближение и компактизация – крайне важное условие для образования между бластомерами плотных и щелевидных контактов. Перед формированием в плазматическую мембрану бластомеров начинает встраиваться увоморулин – белок адгезии клеток. В бластомерах ранних концептусов увоморулин равномерно распределен в клеточной мембране. Позднее в области межклеточных контактов образуются скопления (кластеры) молекул увоморулина.
На 3 – 4-е сутки образуется морула, состоящая из темных и светлых бластомеров, а с 4-х суток начинается накопление жидкости между бластомерами и формирование бластулы, которая называется бластоцистой.
Развитая бластоциста состоит из следующих структурных образований:
1) эмбриобласты;
2) трофобласты;
3) бластоцели, заполненной жидкостью.
Дробление зиготы (формирование морулы и бластоцисты) осуществляется в процессе медленного перемещения зародыша по маточной трубе к телу матки.
На 5-е сутки бластоциста попадает в полость матки и находится в ней в свободном состоянии, а с 7-х суток происходит имплантация бластоцисты в слизистую оболочку матки (эндометрий). Процесс этот подразделяется на две фазы:
1) фазу адгезии – прилипания к эпителию;
2) фазу инвазии – внедрения в эндометрий.
Весь процесс имплантации происходит на 7 – 8-е сутки и продолжается в течение 40 ч.
Внедрение зародыша осуществляется при помощи разрушения эпителия слизистой оболочки матки, а затем соединительной ткани и стенок сосудов эндометрия протеолитическими ферментами, которые выделяются трофобластом бластоцисты. В процессе имплантации происходит смена гистиотрофного типа питания зародыша на гемотрофный.
На 8-е сутки зародыш оказывается полностью погруженным в собственную пластинку слизистой оболочки матки. Дефект эпителия области внедрения зародыша при этом зарастает, а зародыш оказывается окруженным со всех сторон лакунами (или полостями), заполненными материнской кровью, изливающейся из разрушенных сосудов эндометрия. В процессе имплантации зародыша происходят изменения как в трофобласте, так и в эмбриобласте, где происходит гаструляция.
Гаструляция — сложный процесс химических и морфогенетических изменений, сопровождающийся размножением, ростом, направленным перемещением и дифференцировкой клеток, в результате чего образуются зародышевые листки: наружный (эктодерма), средний (мезодерма) и внутренний (энтодерма) — источники зачатков тканей и органов. Гаструляция у человека осуществляется в 2 стадии. Первая стадия (деламинация) приходится на 7-е сутки, а вторая стадия (иммиграция) – на 14 – 15-е сутки. При деламинации образуются два листа: наружный листок – первичная эктодерма, или эпибласт, обращенный к трофобласту, и внутренний – гипобласт, обращенный в полость бластоцисты. Эпибласт в дальнейшем образует нижнюю стенку амниотического пузырька, который начинает формироваться на 8-е сутки. Гипобласт представляет собой верхнюю стенку начинающего формироваться желточного пузырька. К 11-м суткам мезенхима заполняет полость бластоцисты. После чего она подрастает к трофобласту и внедряется в него. При этом формируется хорион. Вторая стадия гаструляции происходит путем перемещения клеток в начале 3-й недели развития. Перемещение клеток происходит в области дна амниотического пузырька по направлению спереди назад, к центру и вглубь в результате размножения клеток. При этом формируется первичная полоска – источник формирования мезодермы. В головном конце первичная полоска утолщается, образуя первичный или головной узелок, откуда берет свое начало хорда, являющаяся основанием для формирования осевого скелета. В конечном этапе гаструляции зародыш приобретает трехслойное строение в виде плоского диска, состоящего из эктодермы, мезодермы и энтодермы.
1. Цитоплазма клетки. Общая морфофункциональная характеристика. Класс-ция органелл, их структура и функции.
Клетка — это ограниченная активной мембраной, упорядоченная, структурированная система биополимеров, образующих ядро и цитоплазму, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом. Все эукариотические клетки состоят из двух основных компонентов: ядра и цитоплазмы. Цитоплазма неоднородна по своему составу и строению и включает в себя гиалоплазму (основную плазму), в которой находятся включения и органеллы. Цитоплазма отделенная от окружающей среды плазмолеммой, включает в себя гиалоплазму, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения. Гиалоплазма— основная плазма, или матрикс цитоплазмы, представляет собой очень важную часть клетки, ее истинную внутреннюю среду. В электронном микроскопе матрикс цитоплазмы имеет вид гомогенного или тонкозернистого вещества с низкой электронной плотностью. Гиалоплазма является сложной коллоидной системой, включающей в себя различные биополимеры: белки, нуклеиновые кислоты, полисахариды и др. Эта система 'способна переходить из золеобразного (жидкого) состояния в гелеобразное и обратно. В состав гиалоплазмы входят главным образом различные глобулярные белки. Органеллы — постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции. Классификация органелл. Различают мембранные органеллы — митохондрии, эндоплазматическую сеть, аппарат Гольджи, лизосомы, гладкую эпдоплазматическую сеть; не мембранные органеллы: свободные рибосомы и полисомы, микротрубочки, центриоли и филаменты. Эндоплазматическая сеть - открыта К. Р. Портером в 1945 г. Этот компонент цитоплазмы представляет собой совокупность вакуолей, плоских мембранных мешков или трубчатых образований, создающих как бы мембранную сеть внутри цитоплазмы. Различают два типа — гранулярную и гладкую эндоплазматическую сеть. Гранулярная эндоплазматическая сеть на ультратонких срезах представлена замкнутыми мембранами, которые образуют на сечениях уплощенные мешки, цистерны, трубочки. Отличительной чертой этих мембран является то, что они со стороны гиалоплазмы покрыты рибосомами. зоны клетки. Рибосомы, связанные с мембранами эндоплазматической сети, участвуют в синтезе белков, выводимых из данной клетки. Гранулярная ЭПС принимает участие в синтезе белков — ферментов, необходимых для организации внутриклеточного метаболизма, а также используемых для внутриклеточного пищеварения. В гранулярной ЭПС происходит синтез мембранных интегральных белков, которые встраиваются в толщу мембраны. Агранулярпая ЭПС также представлена мембранами, образующими мелкие вакуоли и трубки, канальцы, которые могут ветвиться, сливаться друг с другом. В отличие от гранулярной эндоплазматической сети на мембранах гладкой эндоплазмати-ческой сети нет рибосом. Деятельность гладкой эндоплазматической сети связана с метаболизмом липидов и некоторых внутриклеточных полисахаридов. Гладкая ЭПС участвует в заключительных этапах синтеза липидов. Очень важна роль гладкой ЭПС в дезактивации различных вредных для организма веществ за счет их окисления с помощью ряда специальных ферментов. Комплекс Гольджи – внутренний сетчатый аппарат. КГ участвует в сегрегации и накоплении продуктов, синтезированных в цитоплазматической сети, в их химических перестройках, созревании; в цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белками, что приводит к образованию мукопротеидов, и, главное, с помощью элементов КГ происходит процесс выведения готовых секретов за пределы клетки. КГ обеспечивает формирование клеточных лизосом. Лизосомы - это разнообразный класс шаровидных структур, ограниченных одиночной мембраной. Характерным признаком лизосом является наличие в них гидролитических ферментов — гидролаз. Лизосомы были открыты в 1949 г. де Дювом. Среди лизосом можно выделить по крайней мере 3 типа: первичные лизосомы, вторичные лизосомы (фаголизосомы и аутоофагосомы) и остаточные тельца. При участии лизосом в переваривании внутриклеточных элементов (аутолизосомы) они могут обеспечивать модификацию продуктов, приготавливаемых самой клеткой. Пероксисомы - небольшие овальной формы тельца, ограниченные мембраной, содержащие гранулярный матрикс, в центре которого часто видны кристаллоподобные структуры, состоящие из фибрилл и трубок (сердцевина). Особенно характерны для клеток печени, почек. Во фракции пероксисом обнаруживаются ферменты окисления аминокислот, при работе которых образуется перекись водорода, а также выявляется фермент каталаза, разрушающая ее. Каталаза пероксисом играет важную защитную роль, так как Н202 является токсическим веществом для клетки. Митохондрии — органеллы синтеза АТФ. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии для синтеза молекул АТФ. Исходя из этого, митохондрии часто называют энергетическими станциями клетки, или органелла-ми клеточного дыхания. Рибосомы - элементарные аппараты синтеза белковых, полипептидных молекул обнаруживаются во всех клетках. Рибосомы — это сложные рибонуклеопротеиды, в состав которых входят белки и молекулы РНК примерно в равных весовых отношениях. Различают единичные рибосомы и комплексные рибосомы (полисомы). Опорно-двигательные структуры клетки. Цитоскелет. Микротрубочки белковой природы. В цитоплазме они могут образовывать временные сложные образования, например веретеноклеточного деления. Микротрубочки входят в состав сложноорганизованных специальных органелл, таких как центриоли и базальные тельца, а также являются основными структурными элементами ресничек и жгутиков. Микротрубочки представляют собой прямые, неветвящиеся длинные полые цилиндры. Главное функциональное значение микротрубочек цитоплазмы заключается в создании эластичного, но одновременно устойчивого внутриклеточного каркаса (цитоскелета), необходимого для поддержания формы клетки. Центриоли - очень мелкие тельца, размер которых находится на границе разрешающей способности светового микроскопа. Совокупность центриолей и центросферы называют клеточным центром. Эти органеллы в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В неделящихся клетках центриоли часто определяют полярность клеток эпителия и располагаются вблизи комплекса Гольджи. Основой строения центриолей являются расположенные по окружности 9 триплетов микротрубочек, образующих таким образом полый цилиндр.
Незернистые лейкоциты
АГРАНУЛОЦИ́ТЫ (незернистые лейкоциты), лейкоциты животных и человека, не содержащие в цитоплазме зерен (гранул). Агранулоциты — клетки иммунологической и фагоцитарной системы; делятся на лимфоциты и моноциты.
ЛИМФОЦИ́ТЫ (от лимфа и греч. kytos — вместилище, здесь — клетка), одна из форм незернистых лейкоцитов. Выделяют 2 основных. класса лимфоцитов. В-лимфоциты происходят из фабрициевой сумки (у птиц) или костного мозга; из них формируются плазматические клетки, вырабатывающие антитела. Т-лимфоциты происходят из тимуса. Лимфоциты участвуют в развитии и сохранении иммунитета, а также, вероятно, поставляют питательные вещества другим клеткам.
МОНОЦИ́ТЫ (от моно... и греч. kytos — вместилище, здесь — клетка), один из типов лейкоцитов. Способны к фагоцитозу; выделяясь из крови в ткани при воспалительных реакциях, функционируют как макрофаги.
К этой группе лейкоцитов относятся лимфоциты и моноциты. В отличие от гранулоцитов они не содержат в цитоплазме специфической зернистости, а их ядра не сегментированы.
Лимфоциты в крови взрослых людей составляют 20—35% от общего числа лейкоцитов. Среди лимфоцитов различают малые лимфоциты, средние и большие. Большие лимфоциты встречаются в крови новорожденных и детей, у взрослых они отсутствуют. Большую часть всех лимфоцитов крови человека составляют малые лимфоциты.
Для всех видов лимфоцитов характерно наличие интенсивно окрашенного ядра округлой или бобовидной формы. В цитоплазме лимфоцитов содержится небольшое количество азурофильных гранул (лизосом).
Основной функцией лимфоцитов является участие в иммунных реакциях. Однако популяция лимфоцитов гетерогенна по характеристике поверхностных рецепторов и роли в реакциях иммунитета. Среди лимфоцитов различают три основных функциональных класса: B-лимфоциты, T-лимфоциты и т.н. нулевые лимфоциты.
B-лимфоциты впервые были обнаружены в специальном органе у птиц –фабрициевой сумке, (бурсе, bursa Fabricius), поэтому и получили соответствующее название. Они образуются в костном мозге. В-лимфоциты составляют около 30 % циркулирующих лимфоцитов. Их главная функция — участие в выработке антител, т.е. обеспечение гуморального иммунитета. Плазмолемма В-лимфоцитов содержит множество иммуноглобулиновых рецепторов. При действии антигенов В-лимфоциты способны к пролиферации и дифференцировке в плазмоциты — клетки, способные синтезировать и секретировать защитные белки – антитела, или иммуноглобулины, которые поступают в кровь, обеспечивая гуморальный иммунитет.
Т-лимфоциты, или тимусзависимые лимфоциты, образуются из стволовых клеток костного мозга, а созревают в тимусе (вилочковой железе), что и обусловило их название. Они преобладают в популяции лимфоцитов, составляя около 70 % циркулирующих лимфоцитов. Для Т-клеток, в отличие от В-лимфоцитов, характерен низкий уровень поверхностных иммуноглобулиновых рецепторов в плазмолемме. Но Т-клетки имеют специфические рецепторы, способные распознавать и связывать антигены, участвовать в иммунных реакциях. Основными функциями Т-лимфоцитов являются обеспечение реакций клеточного иммунитета и регуляция гуморального иммунитета (т.е. стимуляция или подавление дифференцировки В-лимфоцитов). Т-лимфоциты способны к выработке сигнальных веществ - лимфокинов, которые регулируют деятельность В-лимфоцитов и других клеток в иммунных реакциях. Среди Т-лимфоцитов выявлено несколько функциональных групп: Т-хелперы, Т-супрессоры, Т-киллеры.
Нулевые лимфоциты не имеют поверхностных маркеров на плазмолемме, характерных для В- и Т-лимфоцитов. Их расценивают как резервную популяцию недифференцированных лимфоцитов.
Продолжительность жизни лимфоцитов варьирует от нескольких недель до нескольких лет. Т-лимфоциты являются «долгоживущими» (месяцы и годы) клетками, а В-лимфоциты относятся к «короткоживущим» (недели и месяцы).
Для Т-лимфоцитов характерно явление рециркуляции, т.е. выход из крови в ткани и возвращение по лимфатическим путям снова в кровь. Таким образом они осуществляют иммунологический надзор за состоянием всех органов, быстро реагируя на внедрение чужеродных агентов.
Среди клеток, имеющих морфологию малых лимфоцитов, следует назвать циркулирующие стволовые клетки крови, которые поступают в кровь из костного мозга. Из клеток, поступающих в кроветворные органы, дифференцируются различные клетки крови, а из поступающих в соединительную ткань, — тучные клетки, фибробласты и другие клетки соединительной ткани.
Моноциты. Эти клетки крупнее других лейкоцитов. В крови человека количество моноцитов от 6 до 8 % от общего числа лейкоцитов.
Ядра моноцитов встречаются бобовидные, подковообразные, редко — дольчатые.
Цитоплазма моноцитов менее базофильна, чем цитоплазма лимфоцитов. Она имеет бледно-голубой цвет, но по периферии окрашивается несколько темнее, чем около ядра. В цитоплазме содержится различное количество очень мелких азурофильных зерен (лизосом), расположенных чаще около ядра.
Характерно наличие пальцеобразных выростов цитоплазмы и образование фагоцитарных вакуолей. В цитоплазме расположено множество пиноцитозных везикул.
Моноциты относятся к макрофагической системеорганизма, или к так называемой мононуклеарной фагоцитарной системе. Клетки этой системы характеризуются происхождением из промоноцитов костного мозга, способностью прикрепляться к поверхности стекла, активностью пиноцитоза и иммунного фагоцитоза, наличием на мембране рецепторов для иммуноглобулинов и комплемента. Моноциты циркулирующей крови представляют собой подвижный пул относительно незрелых клеток, находящихся на пути из костного мозга в ткани. Время пребывания моноцитов в периферической крови – от 1,5 суток до 4 дней.
Моноциты, выселяющиеся в ткани, превращаются в макрофаги, при этом у них появляются большое количество лизосом, фагосом, фаголизосом.
Зернистые лейкоциты, их разновидности, строение и функции.
Лейкоциты, или белые кровяные клетки, периферической крови позвоночных и человека характеризуются активной подвижностью и весьма разнородны по морфологическим признакам и биологической роли. Все лейкоциты подразделяют на две большие группы: зернистые лейкоциты, или гранулоциты, и незернистые лейкоциты, или агранулоциты. Группа зернистых лейкоцитов характеризуется наличием в цитоплазме специфической зернистости и сегментированными ядрами. Группа незернистых лейкоцитов отличается отсутствием специфической зернистости в цитоплазме и несегментированными ядрами. Они подразделяются на лимфоциты и моноциты, имеющие разные морфологические и функциональные показатели. Все лейкоциты имеют шаровидную форму. У взрослого человека их насчитывается 3,8 * 109—9,0 * 102 в 1 л крови. Количество лейкоцитов может значительно меняться в зависимости от приема пищи, физического и умственного напряжения и др. Определенные типы лейкоцитов участвуют в защитной функции, обеспечивая фагоцитоз микробов, инородных веществ и продуктов распада клеток, а также участвуют в формировании гуморального и клеточного иммунитета. Нейтрофильные гранулоциты - нейтрофильные лейкоциты, или нейтрофилы, имеют округлую форму, их диаметр в капле свежей крови около 7—9 мкм. Это подвижные клетки и обладают высокой способностью к фагоцитозу. Эозинофильные гранулоциты, или эозинофилы. Это более крупные клетки, чем нейтрофилы; диаметр их в капле свежей крови около 9— 10 мкм, а на мазках - около 12-14 мкм. Различают три разновидности эозииофилов: сегментоядерные, палочкоядерные и юные. Эозинофильные гранулоциты способны к фагоцитозу однако их фагоцитарная активность ниже, чем у нейтрофилов. Oни принимают участие в защитных реакциях организма на чужеродный белок, в аллергических и анафилактических реакциях, в метаболизме гистамина. Базофильные гранулоциты, или базофилы, имеют диаметр около 9 мкм в капле свежей крови и около 11 -12 мкм в мазке. В кроки человека они составляют 0,5-1% от общего числа лейкоцитов. Функция этих гранулоцитов заключается в метаболизме гистамина и гепарина, участвуют в иммунологических реакциях организма. Лейкоцитарная формула. При клинических анализах исследуют химический состав крови, определяют количество эритроцитов, лейкоцитов, гемоглобина, резистентность эритроцитов, быстроту их оседания — скорость оседания эритроцитов и др. У здорового человека форменные элементы крови находятся в определенных количественных соотношениях, которые принято называть гемограммой, или формулой крови. Важное значение для характеристики состояния организма имеет так называемый дифференциальный подсчет лейкоцитов. Определенные процентные соотношения лейкоцитов называют лейкоцитарной формулой.
Репродукция клеток
Различают два основных способа размножения клеток:
- митоз (кариокенез) - непрямое деление клеток, которое присуще в основном соматическим клеткам;
- мейоз или редукционное деление - характерно только для половых клеток.
В литературе нередко описывают третий способ деления клеток - амитоз или прямое деление клеток, которое осуществляется посредством перетяжки ядра и цитоплазмы, с образованием двух дочерних клеток или одной двуядерной. Однако в настоящее время принято считать, что прямой способ деления характерен только для старых и дегенерирующих клеток и является отражением патологии клетки. Возможен четвертый тип репродукции клетки - эндорепродукция, характеризуется увеличением объема клетки, увеличением количеством ДНК в хромосомах, увеличивается количество функциональных органелл. Клетка является гипертрофированной, но к увеличению числа клеток эндорепродукция не приводит, а лишь повышается функциональная активность клеток. Она наблюдается в клетках печени - гепатоцитах, в эпителии мочевого пузыря.
Отмеченные выше два основных периода в жизненном цикле часто делящихся клеток (митоз и интерфаза) в свою очередь подразделяются на фазы или периоды.
Митоз подразделяется на 4 фазы:
- профаза;
- метофаза;
- анафаза;
- телофаза.
В каждой фазе происходят определенные структурные преобразования.
Профаза характеризуется морфологическими изменениями ядра и цитоплазмы. В ядре происходит: конденсация хроматина и образование хромосом, состоящих из двух хроматид, исчезновение ядрышка, распад кариолеммы на отдельные пузырьки. В цитоплазме отмечается редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки, формирование из микротрубочек веретена деления, репродукция зернистой эндоплазматической сети, а также уменьшение числа свободных и прикрепленных рибосом.
В метафазе происходит образование метафазной пластинки, или материнской звезды, неполное обособление сестринских хроматид друг от друга.
Анафаза характеризуется полным обособлением (расхождением) хроматид и образованием двух равноценных диплоидных наборов хромосом, расхождением хромосомных наборов к полюсам митотического веретена и расхождением самих полюсов.
Телофаза характеризуется деконденсацией хромосом каждого хромосомного набора, формированием из пузырьков ядерной оболочки, цитотомией - перетяжкой двуядерной клетки на две дочерние самостоятельные клетки, появлением ядрышка в ядрах дочерних клеток.
Интерфаза подразделяется на 3 периода:
- J1, или пресинтетический;
- S, или синтетический;
- J2, или постсинтетический.
Железистый эпителий представлен особыми эпителиальными клетками — гландулоцитами, обеспечивающими сложную функцию секреции, включающую четыре фазы: поглощениеисходных продуктов, синтез и накопление секрета, выделение секрета — экструзию и, наконец, восстановление структуры железистых клеток. Эти фазы проходят в гландулоцитах циклично, в виде так называемого секреторного цикла.
Экструзия или выделение секрета в железистых клетках различного вида происходит неодинаково. Различают три типа секреции —мерокриновый(эккриновый), апокриновый и голокриновый. При мерокриновом типе секреции клетки полностью сохраняют свою структуру и объем. При апокриновом типе секреции происходит частичное разрушение железистых клеток, т. е. вместе с секретом отделяется либо апикальная часть железистой клетки (макроапокриновая секреция), или верхушки микроворсинок (микроапокриновая секреция). Голокриновый тип секреции приводит к полному разрушению железистых клеток (таблица2).
Железистый эпителий, продуцирующий слизь, можетбыть представлен одиночными железистыми клетками или железистыми полями.Примером последних является железистый эпителий слизистой оболочки желудка. Все клетки его являются железистыми. Продуцируя слизь, они защищают стенку органа от переваривающего действия желудочного сока.
Кроме указанных железистых клеток и полей в организме имеются специальные железистые структуры — железы, выполняющие секреторную функцию. Многие железы являются самостоятельными анатомическими образованиями — оформленными органами (печень, крупные слюнные железы, надпочечники и др.), другие являются лишь частью органов (железы пищевода, желудка и т. д.). Железы делят на две группы — железы эндокринные и железы экзокринные. Эндокринные железы, вырабатывающие гормоны, выделяют свои продукты непосредственно в кровь (гипофиз, надпочечники и др.) и не имеют выводных протоков. Экзокринные железы, продуцирующие секреты, выделяют свои продукты во внешнюю среду — на поверхность тела или в полости органов. Эти железы состоят из секреторных концевых отделов и выводных протоков. Концевые отделы образованы железистыми клетками — гландулоцитами, а выводные протоки — различными видами эпителиев. Экзокринные железы очень разнообразны по строению, типу секреции, способам выделения секрета, видам протоков, характеру секрета и т. д.
По форме концевых отделов различают железы альвеолярные, трубчатые и трубчато-альвеолярные. По ветвлению концевых отделов железы бывают разветвеленными (концевых отделов много) и неразветвленными (концевой отдел один). По строению выводных протоков—простые(выводной проток один) и сложные (выводной проток ветвится). По составу секрета — белковые, слизистые, белково-слизистые и сальные.
Покровные эпителии
В соответствии с морфологической классификацией различают несколько основных типов покровного эпителия,как многослойного, так и однослойного. При этом для многослойных эпителиев характерно наличие нескольких слоев, из которых только самый глубокий -- базальный слой расположен на базальной мембране. Остальные слои не связаны с базальной мембраной. В многослойных эпителиях форма клеток поверхностного слоя является определяющей в названии (например, многослойный плоский неороговевающий эпителий).
Что касается однослойного эпителия, то в нем все клетки расположены на базальной мембране и их ядра расположены либо на разных уровнях (в несколько рядов) в многорядном эпителии, либо на одном уровне (в один ряд) в однорядном.
Слово однорядные в названии этих эпителиев часто опускается. В международной гистологической номенклатуре 1987 г. эти однорядные эпителии носят название - простого, однослойного кубического и простого однослойного призматического (столбчатого) эпителиев.Многослойный плоский неороговевающий эпителий выстилает полость рта, пищевод и роговицу глаза. В нем различают три слоя — базальный, шиповатый и поверхностный. Базальный слой клеток цилиндрической формы располагается на базальной мембране. За счет митотического деления этих клеток происходит смена вышележащих слоев эпителия. В базальном и шиповатом слоях в клетках хорошо развиты пучки тонофиламентов, а между клетками имеются десмосомы. Шиповатый слой представлен клетками многоугольной формы, а поверхностный слой — плоскими клетками.
Многослойный плоский ороговевающий эпителий состоит из множества клеток, объединенных в 4—5 основных слоев—.базальный, шиповатый, зернистый, блестящий(не всегда выражен) и роговой. Этот эпителий образует эпидермис кожи. Базальный и шиповатый его слои состоят соответственно из цилиндрических и многоугольных шиповатых клеток, способных к размножению. Уплощенные клетки зернистого слоя содержат зерна фибриллярного белка - кератогиалина. Клетки блестящего слоя содержат белок элеидин, сильно преломляющий свет. Роговой слой образован уплощенными роговыми чешуйками, не имеющими ядер.
Переходный эпителий (кубический)типичен для мочеотводящих органов -- лоханок почек, мочеточников и мочевого пузыря. Этот двухслойный эпителий состоит из базальных и покровных клеток, по форме приближающихся к кубическим. В нерастянутом виде, при сокращенном органе базальные клетки проявляют признаки увеличения. При этом в эпителии выделяют три слоя: базальный, промежуточный и поверхностный. Во время растяжения стенки органа эпителий становится более тонким, а базальные клетки,соприкасающиеся с базальной мембраной, лежат всего в 2—3 ряда.
Однослойный (псевдомногослойный) многорядный призматический реснитчатый эпителий, выстилает воздухоносные пути от носовой полости до бронхов, а также маточные трубы и др. В нем различают призматические реснитчатые, короткие и длинные вставочные клетки, а также бокаловидные железистые клетки. Все эти клетки лежат на базальной мембране, но имеют различную высоту. Ядра их образуют 3—4 ряда. Самыми высокими клетками являются реснитчатые клетки. Благодаря согласованному движению их ресничек происходит удаление слизи с инородными пылевидными частицами. Слизистые клетки выделяют муцин на поверхность эпителиального пласта.
Однослойный однорядный (простой)призматический каемчатый эпителий представлен в среднем отделе пищеварительного тракта. Он выстилает внутреннюю поверхность тонкой и толстой кишки и образован призматическими клетками, микроворсинки которых обеспечивают процессы всасывания. Среди этих клеток, расположенных на базальной мембране, имеются бокаловидные клетки (одноклеточные железы), выделяющие слизь на поверхность эпителиального пласта. Ядра всех клеток данного эпителия образуют один ряд.
Однослойный плоский эпителий, получивший название мезотелия. покрывает серозные оболочки — плевру, брюшину и перикард. Плоские, полигональной формы клетки мезотелия лежат на базальной мембране. Через мезотелий осуществляются процессы выделения и всасывания серозной жидкости, он способствует скольжению серозного покрова, препятствует образованию спаек.
Яйцеклетка (ovum, ovum, egg cell) – женская половая клетка, крупная, округлой формы, созревание и «хранение» которой происходит в яичнике. Её ядро имеет гаплоидный набор хромосом. Человеческая яйцеклетка имеет диаметр примерно 150 мкм, ее цитоплазма (ооплазма) богата митохондриями, элементами эндоплазматичсского ретикулума, свободными рибосомами, РНК, желточными включениями. По периферии расположены кортикальные гранулы. Яйцеклетки образуются в результате овогенеза. После оплодотворения из оплодотворенной яйцеклетки (зиготы) развивается эмбрион. При партеногенезе эмбрион, а затем новый организм развивается из неоплодотворенной яйцеклетки. К моменту рождения девочки все ее яйцеклетки сформированы; потом в каждом менструальном цикле происходит их отбор и избирательное созревание. Развивающаяся клетка называется ооцитом. После созревания она выходит из яичника и движется через маточную трубу благодаря ее сокращениям в полость матки. Выход одной зрелой клетки в полость тела матки называется овуляцией. Это происходит в среднем раз в 28 дней. После оплодотворения сперматозоидом клетка закрепляется в слизистой оболочке тела матки, и начинается развитие плода (беременность). Если оплодотворения не произошло, клетка погибает в течение 5-6 дней после овуляции и выходит вместе с менструальной кровью. Иногда женская половая клетка не созревает или созревает слабой, нежизнеспособной. Встречаются случаи, когда она не может выйти из фолликула из-за толстых стенок яичника. При плохой сократимости маточных труб клетка не сможет пройти через них, и тогда, в случае ее оплодотворения, может развиться внематочная беременность. Яйцеклетки подвержены мутации, особенно у женщин старшего репродуктивного возраста. Это связано с тем, что они являются самыми долгоживущими клетками в организме.