Виды взаимодействия неаллельных генов
Комплементарность, эпистаз, полимерия.
Неаллельные гены — гены, расположенные или в неидентичных локусах гомологичных хромосом, или в разных парах гомологичных хромосом.
Комплементарность - взаимное соответствие и дополнение частей при образовании целого; принцип комплементарности лежит в основе самосборки биологических структур.
Комплементарное действие проявляется при одновременном присутствии в генотипе организмов двух доминантных неаллельных генов. Каждый из доминантных генов может проявляться самостоятельно, если другой находится в рецессивном состоянии, но их совместное присутствие в доминантном состоянии в зиготе обусловливает новое состояние признака.
НЕ МОГУ БОЛЬШЕ НАЙТИИИИИ
Эпистаз — вид взаимодействия неаллельных генов, при котором одна пара генов подавляет (не дает проявиться в фенотипе) другую пару генов.
Ген-подавитель называют эпистатичным (эпистатическим), подавляемый ген — гипостатичным (гипостатическим).
Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I (i).
Если эпистатичный ген — доминантный, то эпистаз также называется доминантным. Расщепление по фенотипу при доминантном эпистазе может идти в отношении 12:3:1, 13:3, 7:6:3. Если эпистатичный ген — рецессивный, то эпистаз называется рецессивным, и в этом случае расщепление по фенотипу может быть 9:3:4, 9:7, 13:3.
Полимерия – это вид взаимодействия двух и более пар неаллельных генов, доминантные аллели которых однозначно влияют на развитие одного и того же признака. Полимерное действие генов может быть кумулятивным и некумулятивным. При кумулятивной полимерии интенсивность значения признака зависит от суммирующего действия генов: чем больше доминантных аллелей, тем больше степень выраженности признака. При некумулятивной полимерии количество доминантных аллелей на степень выраженности признака не влияет, и признак проявляется при наличии хотя бы одного из доминантных аллелей. Полимерные гены обозначаются одной буквой, аллели одного локуса имеют одинаковый цифровой индекс, например А1а1А2а2А3а3.
Признаки, зависящие от полимерных генов, относят к количественным. Гены, отвечающие за развитие количественных признаков, дают суммарный эффект. Например, за пигментацию кожи у человека отвечают полимерные неаллельные гены S1 и S2. В присутствии доминантных аллелей этих генов синтезируется много пигмента, в присутствии рецессивных - мало. Интенсивность окраски кожи зависит от количества пигмента, что определяется количеством доминантных генов.
Плейотропия — множественное действие генов. Плейотропное действие генов имеет биохимическую природу: один белок-фермент, образующийся под контролем одного гена, определяет не только развитие данного признака, но и воздействует на вторичные реакции биосинтеза других признаков и свойств, вызывая их изменение.
Плейотропное - действие генов впервые было обнаружено Г. Менделем, который установил, что у растений с пурпурными цветками всегда имелись красные пятна в пазухах листьев, а семенная кожура была серого или бурого цвета. То есть развитие этих признаков определяется действием одного наследственного фактора (гена).
У человека встречается рецессивная наследственная болезнь — серповидно-клеточная анемия. Первичным дефектом этой болезни является замена одной из аминокислот в молекуле гемоглобина, что приводит к изменению формы эритроцитов. Одновременно с этим возникают нарушения в сердечно-сосудистой, нервной, пищеварительной, выделительной системах. Это приводит к тому, что гомозиготный по этому заболеванию ребенок погибает в детстве. Причиной синдрома Марфана является доминантная мутация гена, контролирующего одновременно рост, длину пальцев, формирование интеллекта и форму хрусталика. Для человека с этим синдромом характерен комплекс следующих признаков — высокий рост, очень длинные гибкие («паучьи») пальцы, повышенный интеллект, близорукость.
Плейотропия широко распространена. Изучение действия генов показало, что плейотропным эффектом, очевидно, обладают многие, если не все, гены.
Анализирующее скрещивание— скрещивание гибридной особи с особью, гомозиготной по рецессивным аллелям, то есть "анализатором". Смысл анализирующего скрещивания заключается в том, что потомки от анализирующего скрещивания обязательно несут один рецессивный аллель от "анализатора", на фоне которого должны проявиться аллели, полученные от анализируемого организма. Для анализирующего скрещивания (исключая случаи взаимодействия генов) характерно совпадение расщепления по фенотипу с расщеплением по генотипу среди потомков. Таким образом, анализирующее скрещивание позволяет определить генотип и соотношение гамет разного типа, образуемых анализируемой особью.
Метод возвратного скрещивания состоит в получении потомства в ряду поколений от скрещивания гетерозиготы (детей гомозиготных родителей, генетически отличающихся друг от друга) с одним из исходных гомозиготных родителей. Смысл подобного скрещивания - замена гена (генов какого-либо комплекса) одной инбредной линии на гаплотип другой. В результате получается конгенная линия, отличающаяся от исходной только по этому гену (генам этого комплекса).
3. Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько. Возникают в результате разных мутаций одного локуса. Гены множественных аллелей взаимодействуют между собой различным образом.
В популяциях как гаплоидных, так и диплоидных организмов обычно существует множество аллелей, для каждого гена. Это следует из сложной структуры гена — замена любого из нуклеотидов или иные мутации приводят к появлению новых аллелей. Видимо, лишь в очень редких случаях любая мутация столь сильно влияет на работу гена, а ген оказывается столь важным, что все его мутации приводят к гибели носителей. Так, для хорошо изученных у человека глобиновых генов известно несколько сотен аллелей, лишь около десятка из них приводит к серьезным патологиям.
Гру́ппа кро́ви — описание индивидуальных антигенных характеристик эритроцитов, определяемое с помощью методов идентификации специфических групп углеводов и белков, включённых в мембраны эритроцитов животных.
В наследовании групп крови есть несколько очевидных закономерностей:
Если хоть у одного родителя группа крови I(0), в таком браке не может родиться ребёнок с IV(AB) группой крови, вне зависимости от группы второго родителя.
Если у обоих родителей I группа крови, то у их детей может быть только I группа.
Если у обоих родителей II группа крови, то у их детей может быть только II или I группа.
Если у обоих родителей III группа крови, то у их детей может быть только III или I группа.
Если хоть у одного родителя группа крови IV(AB), в таком браке не может родиться ребёнок с I(0) группой крови, вне зависимости от группы второго родителя.
Наиболее непредсказуемо наследование ребенком группы крови при союзе родителей со II и III группами. Их дети могут иметь любую из четырёх групп крови.
Антиген Rh — один из эритроцитарных антигенов системы резус, располагается на поверхности эритроцитов. В системе резус различают 5 основных антигенов. Основным (наиболее иммуногенным) является антиген Rh (D), который обычно подразумевают под названием резус-фактор. Эритроциты примерно 85% людей несут этот белок, поэтому их относят к резус-положительным (позитивным). У 15% людей его нет, они резус-отрицательны (негативны).
Наличие резус-фактора не зависит от групповой принадлежности по системе АВ0, не изменяется в течение жизни, не зависит от внешних причин. Он появляется на ранних стадиях внутриутробного развития, у новорожденного уже обнаруживается в существенном количестве.
Наследование резус-фактора кодируется тремя парами генов и происходит независимо от наследования группы крови. Наиболее значимый ген Rh. Он может быть доминантным - Rh+, либо рецессивным - rh-. Генотип резус-положительного человека может быть гомозиготным - Rh+Rh+, либо гетерозиготным - rh+Rh-. Генотип резус - отрицательного человека может быть только гомозиготным - rh-rh-.
Резус-конфликт — несовместимость групп крови по резус-фактору между резус-отрицательной (Rh−) матерью и резус-положительным (Rh+) ребенком.[1] [2]
Он приводит к распаду (гемолизу) красных кровяных телец (эритроцитов) у ребёнка — гемолитической желтухе новорожденных.