Передача наследственной информации
Наследственность обеспечивает материальную преемственность (поток информации) между поколениями организмов. Она тесно связана с репродукцией (авторепродукцией) жизни на молекулярном, субклеточном и клеточном уровнях. Хранение и передача наследственной информации осуществляется нуклеиновыми кислотами. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособление организмов к среде обитания.
Свойство противоположное наследственности
Изменчивостью называется свойство, противоположное наследственности, связанное с появлением новых признаков, отличных от уже имеющихся. Если бы при репродукции всегда проявлялась только преемственность свойств и признаков, то эволюция органического мира была бы невозможна. Но живой природе свойственна изменчивость. В первую очередь она связана с «ошибками» при репродукции. По-иному построенные молекулы нуклеиновой кислоты несут новую наследственную информацию. Эта новая измененная информация в большинстве случаев бывает вредной для организма, но в ряде случаев в результате изменчивости организм приобретает новые свойства, которые могут оказаться полезными в данных конкретных условиях. Новые признаки подхватываются и закрепляются отбором. Таким образом, наследственная изменчивость создает предпосылки для видообразования и эволюции, а тем самым – и существования жизни.
Вопрос 8. Индивидуальное развитие
Генетическая информация
Организмы, появляющиеся в результате репродукции, наследуют не готовые признаки, а определенную генетическую информацию, возможность развития тех или иных признаков. Эта наследственная информация реализуется во время индивидуального развития. Индивидуальное развитие выражается, как правило, в увеличении массы (рост), что, в свою очередь, базируется на репродукции молекул, клеток и других биологических структур, а также находит отражение в дифференцировке, т. е. появление различий в структуре, усложнении функций и т. д.
Физиологическое развитие
Физиологическое развитие, основные закономерности которого установлены Ч. Дарвином, базируется на наследственной изменчивости, борьбе за существование и отборе. Действие этих факторов привело к огромному разнообразию форм жизни, приспособленных к среде обитания. Прогрессивная эволюция прошла ряд ступеней: доклеточных форм, одноклеточных организмов, все усложняющихся многоклеточных. Наконец, появился человек – существо, в котором, по выражению Ф. Энгельса, «природа приходит к осознанию самой себя». Однако вместе с человеком появилась новая форма существования материи – социальная, высшая по сравнению с биологической и не сводимая к ней. В силу этого человек, в отличие от всех других существ, представляет собой биосоциальный организм.
Вопрос 9. Неклеточные формы жизни
Характеристика вирусов
Во всем многообразии организмов можно выделить две резко различные группы – неклеточные и клеточные формы жизни. К неклеточным формам жизни относятся вирусы. Вирусы проявляют жизнедеятельность только в стадии внутриклеточного паразитизма. Благодаря своей незначительной величине вирусы могут проходить через любые фильтры, в том числе каолиновые, имеющие наиболее мелкие поры, поэтому первоначально они назывались фильтрующимися вирусами. Существование вирусов было доказано русским ботаником Д.И. Ивановским в 1892 г., но увидеть их удалось лишь намного позже. Большинство вирусов имеют субмикроскопические размеры, поэтому для изучения их строения пользуются электронным микроскопом. Наиболее мелкие вирусы, например возбудитель ящура, немногим превышают молекулу яичного белка, но встречаются и крупные вирусы, такие как возбудитель оспы, которые видны в световой микроскоп.
Вироспоры
Зрелые частицы вирусов – вирионы, или вироспоры, состоят из белковой оболочки и нуклеокапсида, в котором сосредоточен генетический материал. Он представлен нуклеиновой кислотой. Одни вирусы содержат дезоксирибонуклеиновую (ДНК), другие – рибонуклеиновую кислоту (РНК). На стадии вироспоры никакие проявления жизни не обнаруживаются. В связи с этим в науке нет единого мнения о том, можно ли вирусы на этой стадии считать живыми. Некоторые из вирусов могут кристаллизоваться наподобие неживого вещества, но, проникая в клетки чувствительных к ним организмов, проявляет все признаки живого. Таким образом, вирусы представляют собой своего рода мост, связывающий в единое целое мир организмов с неживым органическим веществом. Вироспора – лишь одна из стадий существования вируса. Далее в жизненном цикле вирусов можно выделить следующие этапы: прикрепление вируса к клетке, внедрение в нее, латентная стадия, образование нового поколения вирусов, выход вироспор. В период латентной стадии вирус как бы исчезает. Его не удастся выделить из клетки, но в этот период вся клетка синтезирует необходимые для вируса белки и нуклеиновые кислоты, в результате чего образуется новое поколение вироспор.
Вирусные заболевания
Описаны сотни вирусов, вызывающих заболевания у растений, животных и человека. К числу вирусных заболеванийчеловека относятся бешенство, оспа, весенне-летний клещевой энцефалит, грипп, эпидемический паротит, инфекционная желтуха, корь, бородавки и др. Группа вирусов, приспособившаяся к паразитированию в теле бактерий и вне этих клеток не проявляющая свойств жизни, получила название фагов. По своему строению фаги сложнее вирусов, паразитирующих в клетках растений и животных. Многие фаги имеют головастикообразную форму, состоят из головки и хвоста. Внутреннее содержание фага – это преимущественно ДНК, а белковый компонент сосредоточен в основном в так называемой оболочке.
Фаги, проникая в определенные виды бактерий, размножаются и вызывают растворение (лизис) бактериальной клетки. В связи с этим они используются с профилактической и лечебной целью, например, против возбудителей холеры, брюшного тифа и др. Иногда проникновение фагов в клетку не сопровождается лизисом бактерии, а ДНК фага включается в наследственные структуры бактерии и передается ее потомкам. Это может продолжаться на протяжении многих поколений потомков бактериальной клетки, воспринявшей фаг. Такие бактерии получили название лизогенных. Под влиянием внешних факторов, особенно лучистой энергии, фаг в лизогенных бактериях начинает проявлять себя, и бактерии подвергаются лизису. Эта особенность лизогенных бактерий сделала их обязательными «пассажирами» космических кораблей, где они служат индикатором проникновения космической радиации в кабину корабля. Их используют также для изучения явлений наследственности.