Химический состав живой материи: основные биополимеров.

Биополиме́ры— класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды.

Выделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).

История целенаправленного изучения белков началась в XVIII веке, когда в результате работ французского химика Антуана Франсуа де Фуркруа и других учёных по изучению таких веществ как альбумин, фибрин и глютен, белки были выделены в отдельный класс молекул.

В 1836 году появилась первая модель химического строения белков. Эта модель была предложена Мулдером на основании теории радикалов, и до конца 1850-х она оставалось общепризнанной. А всего через 2 года в 1838 году белкам было дано современное название – протеины. Его предложил работник Мулдера Якоб Йенс Берцелиус.
К концу XIX века было исследовано большинство аминокислот, входящих в состав белков, что видимо и послужило толчком к тому, что в 1894 году немецкий ученый Альбрехт Коссель выдвинул теорию, согласно которой именно аминокислоты являются основными структурными элементами белков.

В начале XX века предположение Косселя было экспериментально доказано немецким химиком Эмилем Фишером.

В 1926 году американский химик Джеймс Самнер доказал, что фермент уреаза, вырабатываемый в организме относится к белкам. Своим открытием он открыл дорогу к осознанию важности роли играемой белками в организме человека.

В 1949 году Фред Сенгер получил аминокислотную последовательность гормона инсулина и тем самым доказал, что белки — это линейные полимеры аминокислот.

В 1960-х годах были получены первые пространственные структуры белков, основанные на дифракции рентгеновских лучей на атомарном уровне.

Классификация биополимеров:

Белки имеют несколько уровней организации — первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при объединении нескольких молекул с третичной структурой.

Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются

α-спираль, когда водородные связи возникают между аминокислотами в одной цепи,

β-листы (складчатые слои), когда водородные связи образуются между разными полипептидными цепями, идущими в разных направлениях (антипараллельно,неупорядоченные участки

Для предсказания вторичной структуры используются компьютерные программы.

Третичная структура или «фолд» образуется при взаимодействии вторичных структур и стабилируется нековалентными, ионными, водородными связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка), когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа.

Важный класс полимерных белков составляют Фибриллярные белки, самый известный из которых коллаген.

В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки.

Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп.

Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы – ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определённые биохимические реакции, т.е. обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок – инсулин – ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин – первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г., содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 106 и более.

Нуклеиновые кислоты

Первичная структура ДНК — это линейная последовательность нуклеотидов в цепи. Как правило последовательность записывают в виде букв (например AGTCATGCCAG), причём запись ведётся с 5'- на 3'-конец цепи.

Вторичная структура — это структура, образованная за счёт нековалентных взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, стэкинга и водородных связей. Двойная спираль ДНК является классическим примером вторичной структуры. Это самая распространённая в природе форма ДНК, которая состоит из двух антипаралельных комплементарных полинуклеотидных цепей. Антипараллельность реализуется за счёт полярности каждой из цепей. Под комплементарностью понимают соответствие каждому азотистому основанию одной цепи ДНК строго определённого основания другой цепи (напротив A стоит T, а напротив G располагается C). ДНК удерживается в двойной спирали за счёт комплементарного спаривания оснований — образования водородных связей, двух в паре А-Т и трёх в паре G-C.

В 1868 г. швейцарский учёный Фридрих Мишер выделил из ядер клеток фосфорсодержащее вещество, которое он назвал нуклеином.

Позднее это и подобные ему вещества получили название нуклеиновых кислот. Их молекулярная масса может достигать 109, но чаще колеблется в пределах 105-106.

Исходными веществами, из которых построены нуклеотиды – звенья макромолекул нуклеиновых кислот, являются: углевод, фосфорная кислота, пуриновые и пиримидиновые основания. В одной группе кислот в качестве углевода выступает рибоза, в другой – дезоксирибоза

В соответствии с природой углевода, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК. Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка.

Полисахариды

Полисахариды, синтезируемые живыми организмами, состоят из большого количества моносахаридов, соединённых гликозидными связями. Зачастую полисахариды нерастворимы в воде. Обычно это очень большие, разветвлённые молекулы. Примерами полисахаридов, которые синтезируют живые организмы, являются запасные вещества крахмал и гликоген, а также структурные полисахариды — целлюлоза и хитин. Так как биологические полисахариды состоят из молекул разной длины, понятия вторичной и третичной структуры к полисахаридам не применяются.

Полисахариды образуются из низкомолекулярных соединений, называемых сахарами или углеводами. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путём конденсации гидроксильных групп.

Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками α-D-глюкопиранозы или её производных. Наиболее известна и широко применяема целлюлоза. В этом полисахариде кислородный мостик связывает 1-й и 4-й атомы углерода в соседних звеньях, такая связь называется α-1,4-гликозидной.

Строение биополимеров

Белки (или протеины) относят к высокомолекулярным органическим веществам. Структурно молекула белка состоит из сотни или более, соединённых в цепочку пептидной связью, аминокислот. Существование большого количества разных аминокислот и множество комбинаций по их соединению дают в сумме огромное количество вариантов белков.

Известно, что в каждом живом организме аминокислотный состав белков определяется его собственным генетическим кодом. К примеру, в человеческом организме встречается более 5 миллионов различных белков, причем ни один из них не идентичен белкам любого другого живого организма. Для построения всего этого многообразия белков, необходимо наличие всего 22 аминокислот, которые и являются генетическим кодом человека. На первый взгляд кажется невероятным тот факт, что комбинации всего двух десятков аминокислот образуют в организме человека 5 миллионов различных видов белка, но это лишь указывает на необычайно сложную структуру их молекул.

Из 22 аминокислот составляющих генетический код человека, 9 считаются незаменимыми, так как они не синтезируются в организме человека и должны поступать в него с пищей. К ним относятся: гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. А аминокислоты аланин, аргинин, аспарагин, карнитин, цистеин, цистин, глутаминовая кислота, глутамин, глицин, гидроксипролин, пролин, серин, тирозин не являются незаменимыми, и могут синтезироваться в организме в реакциях трансаминации (синтез из других аминокислот).

Кроме перечисленных 22 аминокислот, в организме человека встречаются еще более 150 других. Находясь в различных клетках и тканях, будучи в свободном или связанном виде, они отличаются от 22 вышеперечисленных тем, что никогда не входят в состав белков организма.

Для построения в организме белковой молекулы важно наличие всех аминокислот и количественные пропорции между ними. При уменьшении количества любой из аминокислот пропорционально уменьшается эффективность всех остальных аминокислот в процессе синтезе белка. А в случае отсутствия хотя бы одной из незаменимых, синтез будет не возможен.

Наши рекомендации