Тема 2.3 Обмен веществ и превращение энергии в клетке

Терминология

1. Катаболизм – совокупность реакций расщепления, сопровождающихся выделением энергии.

2. Метаболизм – совокупность реакций расщепления и синтеза – обмен веществом и энергией.

3. Нуклеотид – мономер, природного полимера ДНК, состоящий из азотистого основания, углевода и фосфорной кислоты.

4. Комплиментарность – порядок взаимного расположения нуклеотидов в параллельных цепях ДНК.

5. Анаболизм – совокупность реакций биосинтеза.

6. Ген – участок молекул ДНК, несущий информацию о признаке.

7. Автотрофы – организмы, получающие энергию из неорганических веществ.

8. Генераторы – организмы получающие органические вещества из окружающей среды.

В клетках непрерывно идут процессы биосинтеза. С участием ферментов (биокатализаторов) из простых низкомолекулярных веществ образуются сложные высокомолекулярные соединения: из аминокислот синтезируются белки, из моносахаридов – сложные углеводы, из азотистых оснований – нуклеотиды, а из них нуклеиновые кислоты. Реакции биосинтеза отличаются видовой и индивидуальной специфичностью. В конечном итоге структура синтезируемых крупных органических молекул определяется наследственной информацией, заключенной в определенной последовательности нуклеотидов ДНК. Синтезированные вещества используются в процессе роста для построения клеток и их органоидов и для замены израсходованных или разрушенных молекул. Все реакции синтеза идут с поглощением энергии. Возникает вопрос: откуда клетки и целые организмы черпают энергию для процессов биосинтеза? Энергия для их обеспечения образуется в результате параллельно протекающих реакций расщепления органических молекул, поступающих с пищей, т.е. все реакции катаболизма протекают с выделением энергии. Реакции расщепления составляют энергетический обмен клетки. Совокупность реакций биосинтеза и расщепления веществ носит название метаболизма. Живые организмы для жизнедеятельности нуждаются в источниках энергии. По способу её получения все организмы делятся на две группы – автотрофы и гетеротрофы. Автотрофы – это организмы питающиеся, т.е. получающие энергию за счёт неорганических соединений. К ним относятся некоторые бактерии и все зеленые растения. В зависимости от того, какой источник энергии используется автотрофами для синтеза органических соединений, их делят на две группы: фототрофы и хемотрофы. Для фототрофов источником энергии служит свет, а хемотрофы используют энергию, освобождающуюся при окислительно-восстановительных реакциях. Таким образом, пути получения энергии живыми организмами могут быть различны, направлены они на синтез органических соединений из углекислого газа и воды. Зеленые растения являются фототрофами. При помощи содержащегося в хлоропластах хлорофилла они осуществляют фотосинтез – преобразование энергии солнечного света в энергию химических связей.

https://refdb.ru/look/2257615-p2.html

Фотосинтез

Процесс состоит из двух фаз – световой и темновой. В световой фазе кванты света взаимодействуют с молекулами хлорофилла, в результате чего эти молекулы переходят в более богатое энергией – возбужденное состояние. Затем избыток энергии части возбужденных молекул переходит в теплоту или испускается в виде света. Другая часть энергии передается ионам водорода, и имеющимся в водном растворе вследствие диссоциации воды образовавшиеся атомы водорода непрочно соединяются с органическими молекулами – переносчиками водорода. Ионы гидроксила ОНI отдают свои электроны другим молекулам и превращаются в свободные радикалы ОНI. При их взаимодействии образуется вода и молекулярный кислород:

4ОНI →О2 + 2Н2О.

Таким образом, источником кислорода, образующегося при фотосинтезе и выделяющегося в атмосферу является фотолиз – разложение воды под действием света. Зеленые растения синтезируют до 30% возобновляемого ежегодно кислорода. Кроме фотолиза энергия солнечного излучения используется в световой фазе для синтеза АТФ. Это очень эффективный процесс: в хлоропластах образуется в 30 раз больше АТФ, чем в митохондриях тех же растений с участием кислорода. Таким путем накапливается энергия, необходимая для процессов в темновой фазе фотосинтеза. В комплексе химических реакций темновой фазы, для течения которой свет не обязателен, ключевое место занимает связывание СО2. В этих реакциях участвуют молекулы АТФ, синтезированные во время световой фазы и атомы водорода, образовавшиеся в процессе фотолиза воды и связанные с молекулами-переносчиками:

6СО2 + 24Н+ →С6Н12О6 + 6Н2О.

Так энергия солнечного света преобразуется в энергию химических связей сложных органических соединений.

Хемосинтез

Некоторые бактерии, лишенные хлорофилла, тоже способны к синтезу органических соединений, при этом они используют энергию химических реакций, происходящих в клетках при окислении некоторых неорганических соединений для усвоения СО2 и Н2О и построения из них органических веществ. Процесс образования некоторыми микроорганизмами органических соединений из неорганических за счёт энергии окислительно-восстановительных реакций называется хемосинтезом. К группе хемотрофов относятся в частности, азотфиксирующие бактерии. Одни из них используют энергию окисления аммиака в азотистую кислоту, другие – окисление азотистой кислоты в азотную. Известны хемосинтетики извлекающие энергию, которая возникает при окислении двухвалентного железа в трёхвалентное (их называют железобактериями) или при окислении сероводорода до серной кислоты (серные бактерии). Фиксируя атмосферный азот, переводя нерастворимые минералы в форму пригодную для усвоения растениями, хемосинтезирующие бактерии играют важную роль в круговороте веществ в природе и образовании полезных ископаемых. Организмы, не способные сами синтезировать органические соединения из неорганических, нуждаются в доставке их из окружающей среды. Такие организмы называют гетеротрофами. К ним относятся большинство бактерий, грибы и все животные.

Микроорганизмы поверхности Мирового океана при хемосинтезе образуют до 70% возобновляемого кислорода.

Контрольные вопросы

1. Какие реакции составляют метаболизм клетки.

2. Специфичность реакций биосинтеза.

3. Способы получения энергии организмами.

4. Организмы автотрофы и гетеротрофы.

5. Фотосинтез и его фазы.

6. Значение фотосинтеза.

7. Хемосинтез, его сущность и значение.

8. Важнейшая реакция синтеза и её составные части.

Наши рекомендации