Ионные каналы-структурное образование биологических мембран

Ионы Na+, K+, Са2+, Сl - проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (диаметр 0,5-0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны.

Функцию ионных каналов изучают различными способами. Наиболее распространенным является метод фиксации напряжения, или «voltage-clamp». Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный потенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соответствии с законом Ома величина тока пропорциональна проводимости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т.е. возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембранная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране.

В настоящее время установлены многие типы каналов для различных ионов. Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы.

Изучение функции отдельных каналов возможно методом локальной фиксации потенциала «path-clamp»; Стеклянный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разрежение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регистрируют активность одиночного канала. Система раздражения и регистрации активности канала мало отличается от системы фиксации напряжения.

Ток через одиночный ионный канал имеет прямоугольную форму и одинаков по амплитуде для каналов различных типов. Длительность пребывания канала в открытом состоянии имеет вероятностный характер, но зависит от величины мембранного потенциала. Суммарный ионный ток определяется вероятностью нахождения в открытом состоянии в каждый конкретный период времени определенного числа каналов.

Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудности. П.Г. Костюком был разработан метод внутриклеточного диализа, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Оказалось, что часть ионного канала, открытая во внеклеточное пространство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.

Именно ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость.

Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т.е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так называемые воротные механизмы).

Рассмотрим принцип работы ионных каналов на примере натриевого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие п-ворот, расположенных у выхода натриевых каналов (инактивация). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула.

Работа натриевых каналов определяется величиной мембранного потенциала в соответствии с определенными законами вероятности. Рассчитано, что активированный натриевый канал пропускает всего 6000 ионов за 1 мс. При этом весьма существенный натриевый ток, который проходит через мембраны во время возбуждения, представляет собой сумму тысяч одиночных токов.

При генерации одиночного потенциала действия в толстом нервном волокне изменение концентрации ионов Na+ во внутренней среде составляет всего 1/100000 от внутреннего содержания ионов Na гигантского аксона кальмара. Однако для тонких нервных волокон это изменение концентрации может быть весьма существенным.

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов (см. табл. 2.1).

Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга.

Свойство проводимости различных каналов неодинаково. В частности, для калиевых каналов процесс инактивации, как для натриевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.

Особый интерес представляют кальциевые каналы.

Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли «мессенджера», или вторичного посредника. Активация кальциевых каналов обеспечивается деполяризацией клеточной мембраны, например входящим натриевым током.

Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации свободного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существенную роль в клетках сердца. Электрогенез кардиомиоцитов рассматривается в главе 7. Электрофизиологические характеристики клеточных мембран исследуют с помощью специальных методов.


.

Ионные каналы (ИК) относятся к мембранным интегральным белкам, пронизывающим клеточную мембрану поперёк. Они выстроены из нескольких субъединиц и образуют структуру со сложной пространственной конфигурацией. В этой своеобразной «молекулярной машине» имеются системы открытия, закрытия, избирательности, активации, инактивации и регуляции, а также участки-сайты для связывания с управляющими веществами.

http://bibliofond.ru/view.aspx?id=791822


Функции биологических мембран следующие:

1. Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

2. Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

3. Выполняют роль рецепторов (получение и преобразование сигналов из окружающей среды, узнавание веществ клеток и т. д.).

4. Являются катализаторами (обеспечение примембранных химических процессов).

5. Участвуют в преобразовании энергии.
Ионные каналы-структурное образование биологических мембран - student2.ru

В структуру мембран обязательно входят белки и их состав варьирует в зависимости от функции той или иной мембраны. В зависимости от прочности связи с мембраной различают периферические и интегральные белки. Интегральные белки располагаются между липидами монослоя или пронизывают весь бислой, часто возвышаясь над поверхностью мембраны. Периферические белки связаны с мембранами электростатическими и водородными связями и часто взаимодействуют таким образом с интегральными белками (рис. 4.7.1.).

Ионные каналы-структурное образование биологических мембран - student2.ru В структуру мембран обязательно входят белки и их состав варьирует в зависимости от функции той или иной мембраны. В зависимости от прочности связи с мембраной различают периферические и интегральные белки. Интегральные белки располагаются между липидами монослоя или пронизывают весь бислой, часто возвышаясь над поверхностью мембраны. Периферические белки связаны с мембранами электростатическими и водородными связями и часто взаимодействуют таким образом с интегральными белками (рис. 4.7.1.).

Белки выполняют следующие функции:

1) транспорт (трансмембранный перенос веществ);

2) преобразование энергии (ферменты дыхательной цепи);

3) коммуникативную (рецепторные белки связывают клетку с окружающей средой);

4) и ряд специфических функций.

Наши рекомендации