Клетка – открытая биологическая система
Клетка является элементарной живой системой.На уровне клетки проявляются большинство основных свойств живой материи - обмен веществ и энергии, рост, развитие, раздражение, самовоспроизведение. Мы можем выделить из клетки отдельные ее компоненты или даже молекулы и убедиться, что многие из них обладают специфическими функциональ ными особенностями. Так, например, выделенные актин-миозиновые фибриллы могут сокращаться в ответ на добавление АТФ; вне клетки активно «работают» многие ферменты, участвующие в синтезе или распаде сложных биологически молекул; выделенные рибосомы в присутствии необходимых факторовмогут синтезировать белок; в настоящее время разработаны неклеточные системы ферментативного синтеза нуклеиновых кислот и т. д. Можно ли считать все эти отдельно взятые, внутриклеточные компоненты живыми? Вероятно, нет, потому что они обладают только определенным свойством живого, а не всем комплексом таких характеристик. Только клетка является наименьшей единицей, обладающей всеми, вместе взятыми, свойствами, отвечающими определению «живое».
Клетка является открытой системой, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой.
Клетка не только единица строения, но и единица функционирования. Все ее системы взаимосвязаны и функционируют как единое целое.
Гетеротрофные клетки получают углеводы извне, а автотрофные клетки сами создают их путем фотосинтеза (из СО2 и Н2О, которые поступают из окружающей среды) или хемосинтеза. Большая часть углеводов расщепляется с целью высвобождения энергии. Получаемая энергия связывается в форме АТФ. Энергию АТФ клетка использует на различные жизненные процессы - синтез, выделение веществ, движение и т. д. Глюкоза и другие углеводы используются также для биосинтеза полисахаридов, которые в форме гликолипидов и гликопротеинов включаются в гликокаликс (у животных), в форме гемицеллюлозы и пектиновых веществ - в клеточную стенку растений, в форме хитина - в клеточную стенку грибов. Целлюлоза оболочек растительных клеток синтезируется на плазмалемме или в самой клеточной стенке. Автотрофные зеленые клетки передают большую часть синтезируемых ими углеводов незеленым гетеротрофным клеткам, в основном, в виде сахарозы.
Растительные клетки сами синтезируют большую часть аминокислот, входящих в состав белков. Синтез некоторых аминокислот может осуществляться ими в хлоропластах, в митохондриях и цитоплазме. Животные клетки синтезируют лишь некоторые аминокислоты (заменимые), часть аминокислот (незаменимые), животные клетки получают из окружающей среды; для этого они поглощают белки, в основном путем эндоцитоза и расщепляют их затем с помощью ферментов лизосом до аминокислот.
Белки, в том числе и ферменты, синтезируются на рибосомах с участием иРНК и тРНК. Этот синтез идет, главным образом, в цитоплазме, а также в хлоропластах и митохондриях. Из цитоплазмы белки переходят в клеточное ядро (гистоновые и негистоновые белки хромосом, белки субъединиц рибосом и др.), в митохондрии и хлоропласты.
На рибосомах, связанных с ЭПС, синтезируются резервные и экспортные белки, которые при участии комплекса Гольджи путем экзоцитоза покидают клетку.
Все эти и другие процессы осуществляются путем реализации генетической информации, которая сосредоточена в молекулах ДНК ядра, пластид и митохондрий. В названных органеллах происходит репликация ДНК - необходимая предпосылка их идентичного деления и клетки в целом, а также транскрипция, обеспечивающая появление различных видов РНК. На рибосомах при участии всех типов РНК осуществляется трансляция - конечный этап реализации генетической информации или синтез белков. Посредством белков регулируются синтез и расщепление веществ в клетке, синтез АТФ, клеточный рост, подготовка и осуществление деления клетки, и другие процессы
Таким образом, клетка является открытой биологической системой, наименьшей единицей жизни - единицей строения функционирования, размножения организмов и их взаимосвязи с окружающей средой.
История открытия клеток
Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В 1665 году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа. Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В 1675 году итальянский врач М. Мальпиги, а в 1682 году — английский ботаник Н. Грю подтвердили клеточное строение растений. О клетке стали говорить как о «пузырьке, наполненном питательным соком». В 1674 году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, 1632—1723) с помощью микроскопа впервые увидел в капле воды «зверьков» — движущиеся живые организмы (инфузории, амёбы, бактерии). Также Левенгук впервые наблюдал животные клетки — эритроциты и сперматозоиды. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. В 1802—1808 годах французский исследователь Шарль-Франсуа Мирбель установил, что все растения состоят из тканей, образованных клетками. Ж. Б. Ламарк в 1809 году распространил идею Мирбеля о клеточном строении и на животные организмы. В 1825 году чешский учёный Я. Пуркине открыл ядро яйцеклетки птиц, а в 1839 ввёл термин «протоплазма». В 1831 году английский ботаник Р. Броун впервые описал ядро растительной клетки, а в 1833 году установил, что ядро является обязательным органоидом клетки растения. С тех пор главным в организации клеток считается не мембрана, а содержимое.
Клеточная теория строения организмов была сформирована в 1839 году немецким зоологом Т. Шванном и М. Шлейденом и включала в себя три положения. В 1858 году Рудольф Вирхов дополнил её ещё одним положением, однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.
В 1878 году русским учёным И. Д. Чистяковым открыт митоз в растительных клетках; в 1878 году В. Флемминг и П. И. Перемежко обнаруживают митоз у животных. В 1882 году В. Флемминг наблюдает мейоз у животных клеток, а в 1888 году Э Страсбургер - у растительных.
18. Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.