Архитектура клетки (цитоскелет)
Эукариотические клетки способны изменять свою форму, перемещаться, передвигать органеллы по цитоплазме и разделять хромосомы во время митоза. Эта способность обеспечивается трехмерной сетью белковых нитей (филаментов), составляющих главную архитектуру клетки – цитоскелет (иногда обозначаемый как цитоматрикс). Белковые волокна пронизывают цитоплазму эукариотических клеток и во множестве точек связаны с белками плазматической мембраны и органелл. Все эти волокна представляют собой структуры, состоящие из субъединиц – особых глобулярных белков. (Белки цитоскелета, как и другие белки клетки, закодированы в генах и синтезируются на рибосомах.)
Субъединицы цитоскелета соединяются между собой слабыми связями (водородными, ионными и др.) и это свойство позволяет клетке формировать легко изменяющиеся динамичные пространственные структуры цитоскелета. Отмечено, что при различных воздействиях клетка в первую очередь перестраивает цитоскелет, демонтируя основные компоненты своей архитектуры, а затем формирует их заново, в соответствии с характером полученного сигнала; при этом детальное строение цитоскелета постоянно меняется при сохранении общего плана его организации. Такую форму работы цитоскелетной системы называют принципом динамической нестабильности.
В зависимости от диаметра филаменты разделяются на три группы: микрофиламенты (5–7 нм), промежуточные волокна (около 10 нм) и микротрубочки (около 25 нм). Каждый тип цитоскелетных структур образует в клетке собственную систему со своими основными и минорными белками. Эти системы не являются абсолютно независимыми, а взаимодействуют друг с другом и с другими компонентами клетки – плазматической мембраной, ядром и другими органоидами клетки. Согласно существующим представлениям, цитоскелет не только способствует поддержанию формы клетки и осуществляет все типы клеточных движений, но и объединяет разные части клетки и обеспечивает передачу сигналов внутри клетки за счет образования пространственных белковых комплексов между рецепторами и ферментами.
Микрофиламенты встречаются практически во всех типах клеток и состоят из белка актина – наиболее распространенного в эукариотических клетках. (Актин составляет около 5% общего белка клетки; в скелетных мышцах – приблизительно 20% клеточной массы.) Актин может существовать в виде мономера (G-актин – «глобулярный актин», состоящий из 375 аминокислотных остатков) или волокна (F-актин – «фибриллярный актин»). Каждый F-актиновый филамент представляет спиралевидную структуру длиной несколько микрометров. Волокна F-актина имеет два разноименно заряженных конца, которые полимеризуются с различной скоростью. Быстро растущий конец называется плюс-концом, а медленно растущий – минус-концом. Плюс-конец актинового филамента растет в 10 раз быстрее, чем минус-конец.
Микрофиламенты участвуют в динамических процессах, таких, как мышечное сокращение, движение немышечных клеток, фагоцитоз, образование выростов цитоплазмы у подвижных клеток и акросом в процессе слияния сперматозоида с яйцеклеткой. Все эти процессы осуществляются с помощью актин-связывающих белков.
В цитоплазме клеток имеются более 50 различных типов актин-связывающих белков, которые специфически взаимодействуют с G-актином и F-актином. Эти белки выполняют различные функции: регулируют объём G- актинового пула (профилин), стабилизируют концы нитей F-актина (фрагин), сшивают филаменты с другими компонентами цитоскелета. Некоторые актин-связывающие белки, например, гельформирующие (от слова – желе) – скрепляют волокна актина крест-накрест и, тем самым, переводят состояние участка цитоплазмы из состояния золь (от лат. solutio – раствор) в гель. Ещё один актин-связывающий белок – спектрин, называемый также фодрином, соединяет волокна актина в пучки и прикрепляет их к цитоплазматической мембране и к сетке, построенной из промежуточных волокон. Белок валлин сцепляет актиновые филаменты в параллельно упорядоченные жесткие структуры и оказывает влияние на скорость полимеризации G-актина.
Почти все типы движений в клетке происходят с участием актин-связывающего белка миозина. У всех молекул миозина имеется головка, шейка и хвост. Головка миозина способна присоединяться к мономеру актина и, при наличии АТФ, двигаться от плюс- к минус-концу микрофиламента. В скелетных мышцах молекулы актина и миозина расположены на фиксированных расстояниях друг от друга, а перемещение головок миозина по актиновым нитям приводит к сокращению мышц. В немышечных клетках при взаимодейстии с белком миозином актиновые филаменты могут формировать сократительные пучки, благодаря которым образуются инвагинации (впячивания) клеточной поверхности. Такие инвагинации образуются, например, при делении клеток. В общем, характер движений в клетке зависит от строения белка миозина, структура которого имеет более 80 вариантов. Комбинируя актиновые микрофиламенты с различными вариантами миозина и другими актин-связывающими белками, клетка формирует структуры, различающиеся по архитектуре, подвижности и времени существования.
У большинства клеток микрофиламенты образуют под плазматической мембраной трехмерную структуру, так называемую актиновую кору (актиновый кортекс). Особенность этой структуры – быстрое обновление микрофиламентов; например, в кортексе лейкоцита филаменты существуют не более 5 секунд. Основной тип перестроек кортекса у подвижных клеток связан с образованием
псевдоподий – выростов цитоплазмы. Псевдоподии могут иметь форму плоской пластинки (ламеллоподия), узкого цилиндра (филоподия) или шаровидного пузыря. Форма псевдоподий зависит от типа актин-связывающих белков, взаимодействующих с микрофиламентами и плазматической мембраной.
Актиновые микрофиламенты участвуют также в создании сложных пространственных и относительно стабильных цитоскелетных структур. Например, основу микроворсинок эпителиальных клеток кишечника и почек составляют длинные пучки актиновых филаментов. На верхней поверхности волосковых клеток улитки внутреннего уха, отвечающих за восприятие звуков, находятся специализированные отростки (волоски) – стереоцилии. Стереоцилии располагаются правильными рядами подобно трубам клавишно-музыкального инструмента – оргáна. Внутренняя полость волоска-стереоцилии заполнена актиновыми филаментами и молекулами других белков. Мутации некоторых генов, кодирующих эти белки, приводит к дегенерации волосковых клеток и проявляется в виде одной из форм наследственной глухоты (синдром Ашера).
Микрофиламенты принимают активное участие в движении клетки. При этом актиновые филаменты постоянно полимеризуется на конце двигательного края клетки и деполимеризуется с внутренней стороны. Процессы полимеризации и деполимеризации F-актина могут быть нарушены ядами (токсинами) грибов. Например, фаллоидин (яд бледной поганки) связывается с минус-концом актина и ингибирует деполимеризацию, в то время как цитохалазин (токсин из плесневых грибов, обладающий свойством цитостатика) присоединяется к плюс-концу, блокируя полимеризацию актина и движение клетки. Длительное воздействие веществ, нарушающих полимеризацию или деполимеризацию актиновых филаментов, приводит к смерти этих клеток.
Полимеризация актина – это точно регулируемый процесс, контролируемый с помощью поверхностных рецепторов клетки, ферментов (протеинкиназ) и ионов кальция. Нарушение этого процесса сопровождается клиническими проявлениями. Например, в трансформированных клетках отмечается уменьшение экспрессии белков, регулирующих сборку актина. Значительные аномалии актиновых филаментов наблюдаются в клетках некоторых злокачественных опухолей. В клетках саркомы (опухоли соединительной ткани) обнаружено наличие тонких и коротких филаментов актина. Эти клетки, в отличие от нормальных клеток, очень подвижны и обладают большой способностью к метастазированию.
Промежуточные филаменты состоят из белков специфических для определенных клеточных типов (напр. кератины в эпителиальных клетках, виментин в клетках соединительной ткани, десмин в клетках мышечных тканей и др). Промежуточные филаменты придают прочность клетке, так как они представляют собой крепкие, волокнистые, устойчивые к растяжению полипептиды и распределяются по всей цитоплазме клетки, образуя прочную сеть. Кроме того, промежуточные волокна присутствуют в ядре, образуя сеть филаментов (ламину) на внутренней поверхности ядерной мембраны, тесно связанную с ядерными порами.
Структурными элементами промежуточных волокон являются белки, принадлежащие к пяти родственным семействам и проявляющие высокую степень клеточной специфичности. Типичными представителями этих белков являются цитокератины, десмин, виментин, кислый фибриллярный глиапротеин и нейрофиламент. Все эти белки имеют в центральной части базовую стержневую структуру, которая носит название α-спирали. Две пептидные цепи (димер) образуют суперспираль. Такие димеры соединяются антипараллельно, образуя тетрамер. Агрегация тетрамеров по принципу «голова к голове» даёт протофиламент. Восемь протофиламентов сплетаются вместе и образуют промежуточное волокно диаметром 10 нм. Эластичность промежуточных филаментов обеспечивается тем, что димеры каждого тетрамера расположены в шахматном порядке относительно друг друга.
Волосы и ногти человека, шерсть, перья, иглы, когти, и копыта животных состоят главным образом из кератина (цитокератина). В одном волокне шерсти переплетены миллионы фибрилл. Отдельные цепи кератина скреплены многочисленными дисульфидными связями, что придает им дополнительную твердость. Выделено более 30 различных кератинов, комбинирующихся по два типа в эпителиальных клетках человека. Кроме того описано восемь изоформ тяжелых кератинов, специфичных для волос и ногтей. В нервных клетках существуют нейрофиламенты, придающие необходимую механическую опору длинным аксонам. Филаменты десмина расположены в Z-дисках саркомеров скелетных мышц. В различных типах клеток промежуточные филаменты играют важную роль в формировании клеточных контактов, называемых десмосомами, которые соединяют соседние клетки. Полудесмосомы прикрепляют эпителиальные клетки к базальной мембране, на которой они расположены.
Микротрубочки
Присутствующие во всех эукариотических клетках микротрубочки представляют собой длинные нитевидные структуры, протянутые по всей цитоплазме и формирующие сеть, которая поддерживает структурную организацию и локализацию некоторых органелл.
Микротрубочки образуются при полимеризации белка тубулина (лат. tubula – трубочка), который является гетеродимером, образованным субъединицами α- и β- тубулина. В процессе полимеризации α-тубулин одного димера контактирует сβ-тубулином следующего димера с образованием протофиламентов. Тринадцать тубулиновых продольных рядов протофиламентов (нитей), идущих по спирали, образуют микротрубочку диаметром 24 нм и длиной несколько микрометров.
Рис. Схема строения микротрубочки, показывающая каким образом тубулиновые полипептиды, связываясь друг с другом, образуют цилиндрическую стенку. А. Поперечный срез Б – Короткий отрезок микротрубочки.
Микротрубочки способны образовывать синглет, дублет и триплет.
A микротрубочка дублета или триплета состоит из 13 протофиламентов.
Трубочки B и C состоят из меньшего числа протофиламентов, обычно 10.
Полимеризация микротрубочек происходит в направлении от головы к хвосту таким образом, что микротрубочка имеет определенную полярность: её концы обозначаются соответственно как плюс- и минус-концы. Микротрубочки в клетке нестабильны. Они могут быстро собираться и разбираться. В клетке минус-концы связаны с центром организации микротрубочек (ЦОМТ) – структурой, расположенной около ядра, которая содержит в животных клетках пару маленьких телец – центриолей, образованных из слившихся микротрубочек. Как правило, микротрубочки ассоциированы с другими белками (миозин, динеин, кинезин), которые связывают микротрубочки с другими элементами цитоскелета и органеллами. Кинезин обеспечивает транспорт органелл и везикул (пузырьков) из одной части клетки в другую от плюс-конца микротрубочки к минус-концу, а динеин от минус-конца к плюс-концу.
Известны химические соединения, способные блокировать сборку микротрубочек (колхицин, винбластин) и стимулирующие образование стабильных микротрубочек (таксол). Следует отметить, что в развивающемся организме могут сложиться условия (недостаток кислорода, пониженная или повышенная температура и т.д.), когда нарушается сборка микротрубочек в клетках, это может служить причиной отклонения от нормального развития.
Микротрубочки, как и актиновые филаменты, принимают участие в поддержании формы клетки. Наряду со статической функцией, микротрубочки участвуют во многих процессах, протекающих во всех эукариотических клетках: мейозе, митозе, клеточном движении и секреции. Они служат направляющими «рельсами» для транспорта органелл. Вместе с ассоциированными белками микротрубочки способны осуществлять механическую работу, например, транспорт митохондрий, перемещение синаптических пузырьков, движение ресничек (волосоподобных выростов клеток в эпителии легких, кишечника и яйцеводов) и биение жгутика сперматозоида. Пузырьки, образуемые аппаратом Гольджи, направляются в различные места клетки по микротрубочкам строго по назначению. Кроме того микротрубочки в форме митотического веретена – важнейшая часть аппарата, обеспечивающего правильное распределение хромосом между дочерними клетками при делении эукариотических клеток.
Функции микротрубочек: 1) обеспечение расхождения хромосом при делении клеток, 2) поддержание формы клетки, 3) участие в транспорте макромолекул и органелл, 4) обеспечение подвижности жгутиков, ресничек.
Функции цитоскелета
Цитоскелет выполняет три главные функции.
1. Служит клетке механическим каркасом, который придаёт клетке типичную форму и обеспечивает связь между мембранной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.
2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках, но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.
3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.
Микрофиламенты и промежуточные волокна.
Микрофиламенты построенные из F-актина пронизывают микроворсинки, образуя узлы. Эти микроволокна удерживаются вместе с помощью актинсвязывающих белков, наиболее важными из которых являются фимбрин и виллин. Кальмодулин и миозиноподобная АТФ – аза соединяют крайние микроволокна с плазматической мембраной. .
Клетка может менять набор синтезируемых белков цитоскелета в зависимости от условий, но процесс этот медленный. Конструкция цитоскелета способна быстро меняться даже без синтеза новых молекул, за счет полимеризации и деполимеризации нитей. В клетке все время идет обмен между нитями и раствором белков-мономеров в цитоплазме. Во многих клетках примерно половина молекул актина и тубулина находится в виде мономеров в цитоплазме и половина входит в состав нитей микрофиламентов. Клетка регулирует стабильность нитей цитоскелета, присоединяя к ним специальные белки, изменяющие скорость полимеризации. Общий принцип функционирования цитоскелета – динамическая нестабильность. Например, форму эритроцита в виде двояковогнутого диска поддерживает примембранный цитоскелет из волокон, образованных белком спектрином. Спектрин связан с белком анкерином (anchor – якорь), который соединяется с белком цитоплазматической мембраны, ответственным за транспорт анионов (Cl- , HCO-3). Дефекты белков спектрина и анкирина вызывают необычную форму эритроцитов. Такие эритроциты очень быстро разрушаются в селезенке. Болезни, вызываемые такими нарушениями, называют наследственным сфероцитозом или наследственным эллиптоцитозом.
Рис. Цитоскелет эукариот. Актиновые микрофиламенты окрашены в красный, микротрубочки — в зеленый, ядра клеток — в голубой цвет.