Инкреторная функция желудочно-кишечного тракта
A. Pearse (1969) сформулировал теорию о наличии в организме функционально активной системы клеток нейроэктодермального происхождения — APUD-системы (от amine content, precursor uptake, decarboxylation — содержание аминов, поглощение предшественников и де-карбоксилирование). Характерными свойствами этой системы являются способность к поглощению и накоплению предшественников биогенных аминов, последующее ее декарбоксили-рование, в результате чего образуются биологически активные вещества и полипептидные гормоны (гастрин, секретин, вазоактивный интестинальный полипептид и др.). Клетки APUD-системы встречаются во многих тканях желудочно-кишечного тракта, параганглиях, различных эндокринных органах (гипоталамус, гипофиз, надпочечники, щитовидная и поджелудочная железы и др.). Эти клетки секретируют полипептидные гормоны и биологически активные пептиды, которые выполняют функцию как гормона, так и нейромедиатора, а некоторые гормоны (например, соматостатин) могут выполнять обе эти функции. APUD-система в организме человека осуществляет эндокринную, нейроэндокринную и паракринную функции.
Согласно классификации, предложенной Е. Solcia и соавт. (1978), различают следующие клетки органов пищеварения, секретирующие специфические полипептидные гормоны:
• P — секретируют бомбезиноподобный пептид;
• ЕС — выделяют вещество Р, мотилин, серотонин;
• D — выделяют соматостатин;
• D, — секретируют вазоактивный интестинальный полипептид (ВИП);
• F — секретируют панкреатический полипептид;
• А — выделяют глюкагон;
• В — секретируют инсулин;
• G — выделяют гастрин, энкефалин;
• S — выделяют секретин;
• I — секретируют холецистокинин;
• К — выделяют желудочный ингибиторный пептид (ЖИП);
• N — секретируют нейротензин;
• L — выделяют глюкагоноподобный пептид (ГПП);
• X и ECL — функции этих двух типов клеток неизвестны.
Эти гормоны синтезируются в специализированных клетках пищеварительной системы. Поверхность клетки, обращенная в просвет пищеварительного тракта, содержит рецепторы, которые принимают сигналы, вызываемые определенными составными частями пищи. Эти сигналы с помощью цАМФ передаются на систему синтеза гормонов. Синтезирующиеся гормоны через противоположный полюс клетки выводятся в кровь и разносятся к клеткам-мишеням, где вызывают соответствующий биологический эффект или оказывают паракрин-ное действие.
Опухоли, развивающиеся из клеток APUD-системы, называют апудомами. Многие эндокринные синдромы (карциноидный синдром, гипогликемия, синдром Иценко—Кушинга, Золлингера—Эллисона, множественные эндокринные неоплазии I, II и III типов) обусловлены наличием апудом. В данном разделе мы будем рассматривать только опухоли желудочно-кишечного тракта. В последнее время вместо более широкого термина "АПУДомы" в клинической литературе для обозначения эндокринных опухолей поджелудочной железы и желудочно-кишечного тракта стал употребляться термин "гастроэнтеропанкреатические эндокринные опухоли" (ГЭПЭО).
В результате многочисленных клинических и фундаментальных исследований в настоящее время описано около 19 типов ГЭПЭО и более 40 продуктов их секреции [Delkore R., Friesen S.R., 1994]. Большинству опухолей свойственна мультигормональная секреция, но развитие клинической картины эндокринного синдрома определяется преобладанием выработки какого-то гормона [Вегпеу С. et al., 1994].
Исследование гормонов, характеризующих функцию инкреторного аппарата желудочно-кишечного тракта и поджелудочной железы, играет важную роль в диагностике гастроэн-теропанкреатических эндокринных опухолей. Основными ГЭПЭО являются инсулинома, га-стринома, глюкагонома, ВИПома, опухоли, обусловливающие развитие карциноидного синдрома и гормонально неактивные эндокринные опухоли. Под гормонально неактивными ГЭПЭО подразумевают опухоли, происходящие из эндокринных клеток, но лишенные способности секретировать тот или иной гормон. В табл. 9.53 представлена классификация ГЭПЭО [Trautmann M.E. et al., 1993].
Лабораторная диагностика нарушений инкреторной функции желудочно-кишечного тракта и тем самым ГЭПЭО основана на определении следующих гормонов, продуцируемых клетками этой системы:
• гастрина в плазме;
• секретина в плазме;
• вазоактивного интестинального полипептида в плазме;
• серотонина в сыворотке;
• гистамина в сыворотке;
• инсулина в сыворотке;
• глюкагона в сыворотке;
• соматостатина в сыворотке.
В этом разделе мы рассмотрим клиническое значение исследования некоторых из них, другие (инсулин, глюкагон, соматостатин) — изложены в разделе «Инкреторная функция поджелудочной железы».
Помимо исследования уровня гормонов желудочно-кишечного тракта, важное клиническое значение имеют фармакологические пробы, которые позволяют отдифференцировать неспецифические повышения уровня гормонов в крови.
Таблица 9.53. Классификация гастроэнтеропанкреатических эндокринных опухолей
OnvYoriK | Ведущие | Локализация | Секретируемый | Частота злокаче- |
* / !1 V WJJ1D | симптомы | опухоли | гормон | ственности, % |
Инсулинома | Гипогликемия натощак | Поджелудочная железа | Инсулин | <5 |
Гастринома | Гиперсекреция НС1, | Поджелудочная железа, | Гастрин | >90 |
(синдром Золин- | рецидивирующие язвы, | двенадцатиперстная | ||
гера—Эллисона | понос | кишка | ||
ВИПома | Водная диарея, гипо- | Поджелудочная железа, | ВИП*, | >75 |
(синдром Верне- | калиемия, гипо- | симпатический ствол | ГисИзП, | |
ра—Моррисона) | или ахлоргидрия | секретин | ||
Глкжагонома | Некролитическая | Поджелудочная железа | Глюкагон | >50 |
мигрирующая эритема, | ||||
сахарный диабет | ||||
Карциноид | Приливы, диарея, | Тонкая кишка | Серотонин, | |
абдоминалгии, | гистамин, | |||
бронхоконстрикция | простагландины | |||
Функционально- | Отсутствуют | Поджелудочная железа, | Отсутствуют | >90 |
неактивные | тонкая кишка | |||
опухоли |
*ВИП — вазоинтестинальный пептид; ГисИзП — гистидин-изолейциновый пептид.
Гастрин в плазме
Содержание гастрина в плазме в норме у взрослых — менее 100 пг/мл; в среднем 14,5— 47,5 пг/мл.
Гастрин образуется в G-клетках антральной части желудка и, кроме того, в небольшом количестве синтезируется в слизистой оболочке тонкой кишки. Это кислый полипептид, состоящий из 17 аминокислотных остатков. Гастрин стимулирует секрецию НС1 и желудочную секрецию, прежде всего он усиливает стимулирующее действие холецистокинина на секрецию ферментов; стимуляция секреции воды и электролитов незначительна. Колебания уровня гастрина в крови подчиняются суточному ритму: наименьшие его значения в период от 3 до 7 ч утра, наивысшие — в дневное время или в связи с приемом пищи. Базальный уровень секреции НС1 в желудке обратно пропорционален уровню гастрина в крови. Повышение уровня гастрина в крови у пожилых людей скорее всего может указывать на уменьшение выработки НС1, чем на атрофический гастрит. Период полураспада гастрина — около 8 мин. Из крови он выводится почками, где после фильтрации и резорбции расщепляется. Наибольшее клиническое значение определение уровня гастрина в крови имеет для диагностики синдрома Золлингера—Эллисона, при котором он повышается в крови до 300—350 000 пг/мл. Повышение уровня гастрина в крови может быть выявлено у больных с пернициозной анемией (130—2300 пг/мл), раком желудка, атрофическим гастритом, ХПН. Для дифференциальной диагностики патологии, вызывающей повышение гастрина в крови, используется определение гастрина после его стимуляции введением хлорида кальция. Хлорид кальция вводят внутривенно капельно из расчета 15 мг/кг в 500 мл изотонического раствора натрия хлорида в течение 4 ч. Пробы крови берут натощак и через 1, 2, 3 и 4 чпосле введения кальция хлорида. При синдроме Золлингера—Эллисона содержание гастрина в пробах крови превышает 450 пг/мл, а у больных с атрофическим гастритом, пернициозной анемией его уровень снижается [ТицУ., 1986].
Снижение уровня гастрина в крови выявляют у больных после гастрэктомии, при гипотиреозе.
Секретин в плазме
Содержание секретина в плазме в норме — 29—45 пг/мл.
Секретин синтезируется в S-клетках желудка (дно и антрум), двенадцатиперстной кишки (наибольшее количество) и тощей кишки. Сильнейшим стимулом к высвобождению секретина является увеличение концентрации Н+. Секретин стимулирует синтез и секрецию
НСОз, который, выходя в просвет двенадцатиперстной кишки, нейтрализует Н+. Снижение концентрации Н+ ингибирует синтез и высвобождение секретина. Главным местом действия секретина являются клетки выводных протоков поджелудочной железы. Если рН дуоденального содержимого становится выше 4,5, то стимуляции секреции поджелудочной железы секретином не отмечается. В желудке секретин стимулирует секрецию пепсина и функцию пилорического сфинктера, ингибирует секрецию гастрина, вызванную кислотами, прекращает секрецию гастрина под влиянием пищи и ингибирует подвижность желудка. В эндокринном аппарате поджелудочной железы он стимулирует секрецию инсулина и ингибирует выделение глюкагона. В печени секретин активирует образование желчи и сокращение желчного пузыря, вызываемое холецистокинином. В дуоденальных железах (бруннеровых) он стимулирует секрецию воды и бикарбонатов. Он ингибирует подвижность тонкой кишки и резорбцию воды и Na+. Из организма секретин выводится главным образом почками.
В клинической практике определение секретина в крови необходимо для диагностики синдрома Вернера—Моррисона. Его уровень может быть значительно повышен у больных, страдающих язвенной болезнью двенадцатиперстной кишки. Для проведения дифференциальной диагностики между этими заболеваниями иногда используют пробу с секретином. Введение больному секретина при синдроме Вернера—Моррисона вызывает увеличение содержания гастрина в крови, тогда как уровень гастрина в крови здоровых людей и больных язвенной болезнью снижается.