Цитоплазма. Строение и функции оболочки
Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром и представляющая собой гиалоплазму — основное вещество цитоплазмы, органоиды — постоянные компоненты цитоплазмы и включения — временные компоненты цитоплазмы. Химический состав цитоплазмы разнообразен. Ее основу составляет вода (60—90% всей массы цитоплазмы). Цитоплазма богата белками, в состав ее могут входить жиры и жироподобные вещества, различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Одна из характерных особенностей цитоплазмы — постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органелл клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.
Основное вещество цитоплазмы — гиалоплазма (цитозоль) — представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель легко превращается в золь и наоборот.
Клеточные оболочки эукариотических организмов имеют различное строение, но всегда к цитоплазме прилегает плазматическая мембрана, на ее поверхности образуется наружный слой. У животных он называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), у растений — клеточной стенкой из мощного слоя волокон клетчатки.
Строение мембран. Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны (модель «сэндвича»). Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. В бислое хвосты молекул в мембране обращены друг.к другу, а полярные головки — наружу, к воде. Помимо липидов в состав мембраны входят белки (в среднем 60%). Они определяют большинство специфических функций мембраны. Молекулы белков не образуют сплошного слоя, различают периферические белки — белки, располагающиеся на наружной или внутренней поверхности липидного бислоя, полуинтегральные белки — белки, погруженные в липидный бислой на различную глубину, интегральные, или трансмембранные белки — белки, пронизывающие мембрану насквозь, контактируя при этом с наружной, и с внутренней средой клетки.
Мембранные белки могут выполнять различные функции: транспорт определенных молекул, катализ реакций, происходящих на мембранах, поддержание структуры мембран, получение и преобразование сигналов из окружающей среды.
В состав мембраны может входить от 2 до 10% углеводов. Углеводный компонент мембран обычно представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину в несколько десятков нанометров. В нем происходит внеклеточное пищеварение, располагаются многие рецепторы клетки, с его помощью, по-видимому, происходит адгезия клеток.
Молекулы белков и липидов подвижны, способны перемещаться, главным образом, в плоскости мембраны. Толщина плазматической мембраны в среднем 7,5 нм.
Функции мембран.
1. Они отделяют клеточное содержимое от внешней среды.
2. Регулируют обмен веществ между клеткой и средой.
3. Делят клетки на компартаменты, предназначенные для протекания различных реакций.
4. Многие химические реакции протекают на ферментативных конвейерах, располагающихся на самих мембранах.
5. Обеспечивают связь между клетками в тканях многоклеточных организмов.
6. На мембранах располагаются рецепторные участки для распознавания внешних стимулов.
Одна из основных функций мембраны — транспортная, обеспечивающая обмен веществ между клеткой и внешней средой. Мембраны обладают свойством избирательной проницаемости, то есть хорошо проницаемы для одних вещества или молекул и плохо проницаемы (или совсем непроницаемы) для других. Существуют различные механизмы транспорта веществ через мембрану. В зависимости от необходимости использования энергии для осуществления транспорта веществ различают: пассивный транспорт — транспорт веществ, идущий без затрат энергии; активный транспорт — транспорт, идущий с затратами энергии.
В основе пассивного транспорта лежит разность концентраций и зарядов. При пассивном транспорте вещества всегда перемещаются из области с более высокой концентрацией в область с более низкой, то есть по градиенту концентрации.
Различают три основных механизма пассивного транспорта:простая диффузия — транспорт веществ непосредственно через липидный бислой. Через него легко проходят газы, неполярные или малые незаряженные полярные молекулы. Чем меньше молекула и чем более она жирорастворима, тем быстрее она проникает через мембрану. Интересно, что полярные молекулы воды очень быстро проникают через липидный бислой. Это объясняется тем, что ее молекулы малы и электрически нейтральны. Диффузию воды через мембраны называют осмосом.
Диффузия через мембранные каналы. Заряженные молекулы и ионы (Na+, К+, Са2+, С1~) не способны проходить через липидный бислой путем простой диффузии, тем не менее, они проникают через мембрану, благодаря наличию в ней особых каналообразующих белков, формирующих поры. Большая часть воды проходит мембрану через каналы, образованные белками-аквапоринами.
Облегченная диффузия — транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за транспорт определенных молекул или групп родственных молекул. Они взаимодействуют с молекулой переносимого вещества и каким-либо способом перемещают ее сквозь мембрану. Так в клетку транспортируются сахара, аминокислоты, нуклеотиды и многие другие полярные молекулы.
Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. Одной из наиболее изученных систем активного транспорта является натрий-калиевый насос. Концентрация К+ внутри клетки значительно выше, чем за ее пределами, a Na+ — наоборот. Поэтому К+ через водяные поры мембраны пассивно диффундирует из клетки, a Na+ — в клетку. Вместе с тем для нормального функционирования клетке важно поддерживать определенное соотношение ионов К+ и Na+ в цитоплазме и во внешней среде. Это оказывается возможным потому, что мембрана, благодаря наличию натрий-калиевого насоса, активно перекачивает Na+ из клетки, а К+ в клетку. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3 иона Na+ и закачивает 2 иона К+. К+ быстрее пассивно диффундирует из клетки, чем Na+ в клетку.
Клетка имеет механизмы, благодаря которым может осуществлять транспорт через мембрану крупных частиц и макромолекул. Процесс поглощения макромолекул клеткой называется эндоцитозом. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной, являющейся частью наружной цитоплазматической мембраны. Различают два типа эндоцитоза: фагоцитоз — захват и поглощение крупных частиц (например, фагоцитоз лимфоцитов, простейших и др.) и пиноцитоз — процесс захвата и поглощения капелек жидкости с растворенными в ней веществами.
Экзоцитоз— процесс выведения различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны.
Органоиды клетки
Органоиды (органеллы) — постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. Каждый органоид имеет определенное строение и выполняет определенные функции.
Различают: мембранные органоиды — имеющие мембранное строение, причем они могут быть одномембранными (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли растительных клеток) и двумембранными (митохондрии, пластиды, ядро).
Кроме мембранных могут быть и немембранные органоиды — не имеющие мембранного строения (хромосомы, рибосомы, клеточный центр и центриоли, реснички и жгутики с базальными тельцами, микротрубочки, микрофиламенты).
Одномембранные органоиды:
1. Эндоплазматический ретикулум (ЭПР).Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПР. Мембраны с одной стороны связаны с наружной цитоплазматической мембраной, с другой — с наружной оболочкой ядерной мембраны. Различают два вида ЭПР: шероховатый (гранулярный), содержащий на своей поверхности рибосомы и представляющий собой совокупность уплощенных мешочков, и гладкий (агранулярный), мембраны которого рибосом не несут.
Функции: разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым пространственное отграничение друг от друга множества параллельно идущих различных реакций, Осуществляет синтез и расщепление углеводов и липидов (гладкий ЭПР) и обеспечивает синтез белка (шероховатый ЭПР), накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза.
2. Аппарат Гольджи.Органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, с которой связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4—6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен.
Важнейшая функция комплекса Гольджи — выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. Здесь происходит синтез сложных углеводов из простых сахаров, созревание белков, образование лизосом.
3. Лизосомы.Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диаметром 0,2—0,8 мкм, содержащие до 60 гидролитических ферментов, активных в слабокислой среде.
Образование лизосом происходит в аппарате Гольджи, куда из ЭПР поступают синтезированные в нем ферменты. Расщепление веществ с помощью ферментов называют лизисом, отсюда и название органоида.
Различают: первичные лизосомы — лизосомы, отшнуровавшиеся от аппарата Гольджи и содержащие ферменты в неактивной форме, и вторичные лизосомы — лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит переваривание и лизис, поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями).
Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.
Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом. Обычно это происходит при некоторых процессах дифференцировки (например, замена хрящевой ткани костной, исчезновение хвоста у головастика лягушек).
4. Реснички и жгутики.Образованы девятью сдвоенными микротрубочками, образующими стенку цилиндра, покрытого мембраной; в его центре находятся две одиночные микротрубочки. Такая структура типа 9+2 характерна для ресничек и жгутиков почти всех эукариотических организмов, от простейших до человека.
Реснички и жгутики укреплены в цитоплазме базальными тельцами, лежащими в основании этих органоидов. Каждое базальное тельце состоит из девяти троек микротрубочек, в его центре микротрубочек нет.
5. К одномембранным органоидам относятся также и вакуоли, окруженные мембраной — тонопластом. В растительных клетках могут занимают до 90% объема клетки и обеспечивают поступление воды в клетку за счет высокого осмотического потенциала и тургор (внутриклеточное давление). В животных клетках вакуоли небольшие, образуются за счет эндоцитоза (фагоцитозные и пиноцитозные), после слияния с первичными лизосомами называются пищеварительными вакуолями.
Двумембранные органоиды:
1. Митохондрии. Двумембранные органоиды эукариотической клетки, обеспечивающие организм энергией. Количество митохондрий в клетке колеблется в широких пределах, от 1 до 100 тыс., и зависит от ее метаболической активности. Число митохондрий может увеличиваться путем деления, так как эти органоиды имеют собственную ДНК.
Наружная мембрана митохондрий гладкая, внутренняя мембрана образует многочисленные впячивания или трубчатые выросты — кристы. Число крист может колебаться от нескольких десятков до нескольких сотен и даже тысяч, в зависимости от функций клетки. Они увеличивают поверхность внутренней мембраны, на которой размещаются ферментные системы, участвующие в синтез молекул АТФ.
Внутреннее пространство митохондрий заполнено матриксом. Вматриксе содержатся кольцевая молекула митохондриальной ДНК специфические иРНК, тРНК и рибосомы (прокариотического типа) осуществляющие автономный биосинтез части белков, входящих состав внутренней мембраны. Эти факты свидетельствуют в пользу происхождения митохондрий от бактерий-окислителей (согласно гипотезе симбиогенеза). Но большая часть генов митохондрии перешла в ядро, и синтез многих митохондриальных белков происходит в цитоплазме. Кроме того, содержатся ферменты, образующие молекулы АТФ. Митохондрии способны размножаться путем деления.
Функции митохондрий — кислородное расщепление углеводов аминокислот, глицерина и жирных кислот с образованием АТФ, синтез митохондриальных белков.
2. Пластиды. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды, обычно желтого, красного и оранжевого цвета, хлоропласты — зеленые пластиды. Пластиды образуются из пропластид — двумембранных пузырьков размером до 1 мкм.
Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Наиболее часто происходит пpeвращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету), обратный процесс происходит в темноте. При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.
Хлоропласты. Основная функция — фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений по форме напоминают двояковыпуклую линзу. Наружная мембрана гладкая, а внутренняя имеет складчатую структуру. В результат образования выпячиваний внутренней мембраны возникает система ламелл и тилакоидов. Внутренняя среда хлоропластов — строма содержит кольцевую ДНК и рибосомы прокариотического типа. Пластиды способны к автономному делению, как и митохондрии. Факты, согласно гипотезе симбиогенеза, также свидетельствуют в пользу происхождения пластид от цианобактерий.
Рис. Современная (обобщённая) схема строения растительной клетки, составленная по данным электронно-микроскопического исследования разных растительных клеток: 1 - аппарат Гольджи; 2 - свободно расположенные рибосомы; 3 - хлоропласты; 4 - межклеточные пространства; 5 - полирибосомы (несколько связанных между собой рибосом); 6 - митохондрии; 7 - лизосомы; 8 - гранулированная эндоплазматическая сеть; 9 - гладкая эндоплазматическая сеть; 10 - микротрубочки; 11 - пластиды; 12 - плазмодесмы, проходящие сквозь оболочку; 13 - клеточная оболочка; 14 - ядрышко; 15, 18 - ядерная оболочка; 16 - поры в ядерной оболочке; 17 - плазмалемма; 19 - гиалоплазма; 20 - тонопласт; 21 - вакуоли; 22 - ядро.
Рис. Строение мембраны
Рис. Строение митохондрии. Вверху и в середине - вид продольного среза через митохондрию (вверху - митохондрия из эмбриональной клетки кончика корня; в середине - из клетки взрослого листа элодеи). Внизу - трехмерная схема, на которой часть митохондрии срезана, что позволяет видеть ее внутреннее строение. 1 - наружная мембрана; 2 - внутренняя мембрана; 3 - кристы; 4 - матрикс.
Рис. Строение хлоропласта. Слева - продольный разрез через хлоропласт: 1 - граны, образованные ламеллами, сложенными стопками; 2 - оболочка; 3 - строма (матрикс); 4 - ламеллы; 5 - капли жира, образовавшегося в хлоропласте. Справа - трехмерная схема расположения и взаимосвязи ламелл и гран внутри хлоропласта: 1 - граны; 2 - ламеллы.