Виды электронных микроскопов
Микробиологические лаборатории организуются при больницах и санитарно-эпидемиологических станциях (СЭС). Существуют также специальные лаборатории, в которых работают с возбудителями особо опасных инфекций, вирусологические лаборатории и др. Микробиологические лаборатории занимаются бактериологической диагностикой инфекционных заболеваний, исследуя испражнения, мочу, кровь, мокроту больных с целью обнаружения патогенных микроорганизмов — возбудителей заболевания. Помимо этого, в микробиологических лабораториях проводят санитарно-бактериологические исследования воды, воздуха, смывов с окружающих предметов, рук, пищевых продуктов для обнаружения санитарно-показательных микроорганизмов, указывающих на загрязнение патогенными микробами. При необходимости в объектах внешней среды определяют наличие патогенных микробов.
В связи с тем что в микробиологических лабораториях работают с заразным материалом, помещение их должно быть изолировано от других больничных помещений, пищеблоков, жилых комнат. В состав лаборатории входят:
1) лабораторные комнаты для проведения микробиологических исследований;
2) моечная;
3) препараторская для подготовки лабораторной посуды, приготовления питательных сред и других вспомогательных работ;
4) автоклавная;
5) комната, где производят прием материала и выдачу результатов исследования. Лабораторных животных, необходимых для постановки биологических проб, содержат в специальном изолированном помещении — виварии. В лабораториях, где объем работ невелик, можно объединить моечную и препараторскую, исключить комнату для приема анализов и т. д.
Лабораторные комнаты должны быть просторными и светлыми, желательно с ориентацией окон на север или северо-запад, так как для работы необходим рассеянный свет. Стены окрашивают светлой масляной краской, пол покрывают линолеумом, лабораторные столы — пластиком или стеклом, что позволяет их легко дезинфицировать. В лабораторной комнате оборудуют застекленный бокс с предбоксником для проведения работ в стерильных условиях.. В боксе помещают бактерицидную лампу, стол, табуретку. В лабораторных комнатах находится специальное оборудование: термостат (рис. 23), холодильник, шкафы, центрифуга и др. Большое значение имеет правильная организация рабочего места. Рабочий стол устанавливают у окна таким образом, чтобы свет падал сбоку или прямо. На столе должны находиться только необходимые для работы предметы: спиртовка или газовая горелка, штативы, бактериологические петли, банка с дезинфицирующим раствором.
Персонал во время работы должен строго соблюдать следующие правила:
1) находиться в лаборатории можно только в специальном халате и шапочке;
2) в лабораторию нельзя вносить посторонние вещи, хранить там продукты, принимать пищу;
3) исследуемый материал поступающий в лабораторию, рассматривается как заразный; его ставят на специальный поднос и обрабатывают снаружи дезинфицирующим раствором;
4) во время работы необходимо соблюдать осторожность, следить за чистотой рук, применять технические приемы, исключающие контакт с заразным материалом;
5) исследуемый материал, отработанные культуры подлежат уничтожению;
6) по окончании работы руки, инструменты, рабочее место обрабатывают дезинфицирующим раствором. Культуры микробов, необходимые для дальнейшей работы, ставят в холодильник или сейф и опечатывают.
Уборка помещений лаборатории. Уборку проводят ежедневно до и после работы влажным способом с применением дезинфицирующих средств. Пол протирают 2— 5% раствором карболовой кислоты или хлорамина. Стены, инвентарь и полы один раз в неделю моют горячей водой с мылом. Бокс убирают в конце рабочего дня, а утром перед работой облучают бактерицидными лампами.
Мытье лабораторной посуды. Посуду, содержащую заразный материал и культуры микробов, обеззараживают в автоклаве (рис. 24).
Нельзя обрабатывать посуду дезинфицирующим раствором, так как даже следы его задерживают рост микробов. Стеклянную посуду моют ершами с применением бикарбоната натрия, полужидкого мыла или стирального порошка. Для устранения белого налета стеклянную посуду помещают на 30— 40 мин в 5—10% раствор хлористоводородной кислоты. Сильно загрязненную посуду опускают в слегка подогретую хромовую смесь. Новую лабораторную посуду кипятят 15 мин в воде с мылом, прополаскивают, погружают в теплый 1—2% раствор хлористоводородной кислоты и кипятят 10—15 мин. В пипетки вводят кусок проволоки, на конец которой плотно накручивают кусок ваты, и тщательно протирают их. Предметные и покровные стекла должны быть хорошо обезжирены (нанесенная на стекло капля воды должна растекаться). Стекла, бывшие в употреблении, загрязненные краской и маслом, опускают на 2 ч в концентрированную серную кислоту или хромовую смесь, затем промывают проточной водой и кипятят в 5% растворе бикарбоната натрия 30—40 мин. Вымытую посуду ставят в сушильный шкаф или сушат на воздухе, пробирки закрывают пробками из ваты, заворачивают в бумагу и стерилизуют в сушильном шкафу или печи Пастера (рис. 25).
Техника взятия и доставки материала в микробиологическую лабораторию. Успех бактериологического исследования зависит от правильности взятия материала и своевременной доставки его в лабораторию. В зависимости от характера патологического процесса, места максимальной (избирательной) локализации возбудителя и пути его выделения в окружающую среду исследуют мокроту (при заболеваниях органов дыхания), испражнения (при желудочно-кишечных инфекциях), мочу (при поражении почек и мочевыводящих путей), гнойное отделяемое (из гнойных очагов), кровь (при кровяных инфекциях).
Материал необходимо брать в стерильную посуду с соблюдением правил, обеспечивающих стерильность.
Испражнения собирают в стерильные картонные тарелки или судно, предварительно обработанное раствором хлорной извести и тщательно промытое горячей водой для уничтожения следов дезинфицирующего раствора. Испражнения берут стерильным шпателем и вносят в стерильную пробирку с пробкой, содержащую консервант (глицериновая смесь, фосфатно-буферная смесь и Др.). Можно брать материал специальной стеклянной ректальной трубкой, которую вводят в прямую кишку на 8— 15 см. Мочу берут стерильным катетером в стерильную пробирку или банку. Рвотные массы собирают в стерильную широкогорлую банку, которую закрывают вощаной бумагой, мокроту — в стерильную банку с пробкой или в стерильную чашку Петри. Гнойное отделяемое ран, мазки из зева и носа берут стерильным ватным тампоном на проволоке.
Кровь из вены для посева берут стерильным шприцем, предварительно обработав локтевой сгиб 75% спиртом, и у постели больного засевают в количестве 5— 10 мл во флакон с жидкой питательной средой в соотношении 1 : 10 (10 мл крови в 100 мл питательной среды).
Трупный материал для микробиологического исследования необходимо брать в первые часы после смерти, так как в дальнейшем микрофлора кишечника распространяется по всему организму. Кровь из сердца берут стерильным шприцем. Из селезенки, печени и других органов после предварительного прижигания их поверхности вырезают стерильными ножницами кусочек и помещают в стерильный сосуд. При взятии отрезка кишечника или желудка предварительно накладывают две лигатуры выше и ниже места взятия.
На каждый стеклянный сосуд с инфекционным материалом необходимо наклеить этикетку, где указывают фамилию, имя, отчество больного и дату взятия материала. Надписи делают простым карандашом. К материалу, отправляемому в лабораторию, должно прилагаться направление, в котором указываются:
1) название материала;
2) учреждение, направившее материал;
3) фамилия, имя, отчество больного;
4) его возраст;
5) дата взятия материала;
6) клинический диагноз;
7) цель исследования;
8) подпись направляющего врача. Взятый исследуемый материал должен быть доставлен в лабораторию в кратчайший срок.
Если этот срок удлиняется, материал необходимо сохранять в холодильнике при 4°С или на льду. Материал, содержащий вирусы, должен и при транспортировке находиться в условиях низкой температуры (например, в термосе со льдом).
Доставку инфицированного материала в лабораторию следует производить с соблюдением мер предосторожности: в закрытой посуде, в специальных металлических биксах, пеналах, чемоданах.
Доставка особо опасного материала (от больных холерой, чумой, натуральной оспой и др.) осуществляется в соответствии со специальными инструкциями. Исследуемый материал помещают в плотно закрывающиеся сосуды, обвязывают пергаментом или другим водонепроницаемым материалом, после чего их обертывают салфетками, смоченными 5% раствором фенола или лизола (необходима полная гарантия от попадания дезинфицирующего раствора в банки с материалом!). После этого сосуды помещают в жестяные коробки с крышкой или металлические биксы. При пересылке на далекие расстояния их помещают в деревянные ящики, опечатывают сургучной печатью и делают надпись: «Опасно. Не открывать во время пересылки». Доставка производится специальным транспортом в сопровождении двух лиц (один из них врач).
Поступивший в лабораторию материал регистрируют в специальном журнале. Исследуемый материал в лаборатории можно хранить: неконсервированный — при температуре 4°С не более 1—2 сут, консервированный в 50% глицерине, например кусочки органов и тканей,— в течение недель, а при необходимости длительного хранения — при замораживании до —15—20°С.
Режим работы микробиологической лаборатории зависит от степени опасности работы с тем или иным возбудителем. По степени патогенности и опасности работы все возбудители разделены на группы:
I — возбудители чумы;
II — возбудители высококонтагиозных эпидемических заболеваний: бруцеллеза, туляремии, сибирской язвы, сапа, натуральной оспы, различных риккетсиозов и др.;
III — возбудители эпидемических бактериальных инфекций: кишечных, туберкулеза, дифтерии, патогенные анаэробы, спирохеты (возвратный тиф), простейшие (малярия) и др.;
IV — все патогенные кокки, гемоглобинофильные бактерии, сальмонеллы.
Работа с культурами I и II групп инфекций проводится в специальных лабораториях только с разрешения Министерства здравоохранения, III группы — в лабораториях СЭС, IV группы — во всех бактериологических лабораториях. В бактериологической лаборатории существуют специальные формы регистрации и учета исследуемого материала, выделенных культур, их уничтожения, передачи культур патогенных микробов внутри лаборатории и вне ее.
Обязательным является ведение следующих журналов:
1) форма 1—журнал регистрации материалов (культур), поступающих для исследования;
2) форма2—журнал выделенных культур и их уничтожения
3) форма 3 — журнал (для лабораторий, работающих с возбудителями I и II групп) движения микробных культур и материалов, подозрительных на зараженность.
2) Микроскоп световой
- сложный оптический аппарат, предназначенный для наблюдения за живыми и неживыми объектами и их деталями, к-рые не видны невооруженным глазом. Состоит из штатива, осветительной и оптической части. В штатив входят башмак; предметный столик с держателем предметного стекла и двумя винтами, перемещающими столик в двух перпендикулярных направлениях; тубус, тубусодержатель; макро- и микровинты, передвигающие тубус в вертикальном направлении. Для освещения объекта используют естественный (рассеянный) свет или искусственное освещение с помощью стационарно вмонтированных в башмак микроскопа осветителя или осветителя, соединенного с ним через планку (ОИ-19 и др.). В осветительную систему также входят зеркало с плоской и вогнутой поверхностями и конденсор, расположенный под предметным столиком и состоящий из 2 линз, ирисовой диафрагмы и откидывающейся оправы для светофильтров. Оптическая часть включает наборы объективов (см.) и окуляров (см.). В обычном М. с. луч от источника света попадает на зеркало, отражаясь от него и проходя через конденсор, концентрируется на объекте, находящемся на предметном столике. Часть прошедших через объект лучей попадает в объектив, преломляется в нем и дает увеличенное обратное действительное изображение объекта на уровне диафрагмы окуляра. Изображение объекта в плосковыпуклой линзе окуляра - мнимое прямое увеличенное. В целом объектив и окуляр дают обратное мнимое и увеличенное изображение объекта. Увеличение микроскопа равно произведению увеличения объектива на увеличение окуляра. В бактериологии обычно используют полезное увеличение в 900 раз (объектив -90 х, окуляр- 10 х). Разрешающая способность М. с. при применении желтого света около 0,2 мкм. С источником УФЛ она может быть повышена до 0,1 мкм Для изучения объектов, к-рые меньше 0,2 мкм и обладают малой контрастностью, используют микроскопию в отраженном свете, подбирая для этого специальные темнопольные кардиоид- или параболоид-конденсоры. Выявление неконтрастных, но различающихся по фазе объектов проводят с помощью фазово-контрастных микроскопов или приставок. Объекты или их части, не видимые в М. с., наблюдают в микроскоп электронный.
3) Электро́нныймикроско́п (ЭМ) — прибор, позволяющий получать изображение объектов с максимальным увеличением до 106 раз, благодаря использованию, в отличие от оптического микроскопа, вместо светового потока пучка электронов с энергиями 200 В ÷ 400 кэВ и более (например,просвечивающие электронные микроскопы высокого разрешения с ускоряющим напряжением 1 МВ).
Разрешающая способность электронного микроскопа в 1000÷10000 раз превосходит разрешение традиционного светового микроскопа и для лучших современных приборов может быть меньше одного ангстрема. Для получения изображения в электронном микроскопе используются специальныемагнитные линзы, управляющие движением электронов в колонне прибора при помощи магнитного поля.
Иммерсия (микроскопия)
Иммерсия (иммерсионный метод микроскопического наблюдения) в оптической микроскопии — это введение между объективом микроскопа и рассматриваемым предметом жидкостидля усиления яркости и расширения пределов увеличения изображения.
Иммерсионная система — оптическая система, в которой пространство между первой линзой и предметом заполнено жидкостью. Применяемая таким образом жидкость называется иммерсионной.
Принцип действия
Из основной формулы разрешающей способности микроскопа: d = 0,61λ/А, следует, что предел разрешения определяется длиной волны λ и числовой апертурой объектива А. Так как не всегда возможно изменить длину волны (особенно если исследование производится в белом свете), то для достижения лучшего разрешения стремятся применять объектив, имеющий бо́льшую числовую апертуру.
Однако для «сухого» объектива, с показателем преломления среды перед его передней линзой n=1, максимальное значение числовой апертуры объектива не может превысить значение около 0,95.
Для решения этой проблемы берут иммерсионную жидкость, показатель преломления которой n2 и показатель преломления фронтальной линзы n3 выбраны определённым образом. Исходящие от одной точки объекта OP лучи проходят без преломления через иммерсионную пленку и могут «приниматься» фронтальной линзой объектива.
В этом случае числовая апертура увеличивается, а предел разрешения уменьшается в n2 раз.
Дополнительные преимущества
· Возникающие на поверхностях покровного стекла и фронтальной линзе объектива паразитные отражения существенно меньше, нежели у «сухих» объективов, а в некоторых случаях паразитные рефлексы могут быть полностью устранены. Это улучшает контраст изображения и позволяет поднять освещённость препарата без вредного влияния на изображение.
· Толщина слоя жидкости между объективом и препаратом может меняться, и за счет этого можно в некоторых пределах изменять компенсацию сферической аберрации.
Иммерсионные жидкости
В расчёте объективов микроскопа оптические параметры иммерсионной жидкости (показатель преломления и дисперсия) учитываются при коррекции аберраций оптической системы (исправление кривизны поля, сферических и хроматических аберраций).
Применяются:
· Кедровое или минеральное масло (показатель преломления 1,515)
· Водный раствор глицерина (1,434)
· Физиологический раствор (1,3346)
· Вода (1,3329)
· Монобромнафталин (1,656)
· Вазелиновое масло (1,503)
· Йодистый метилен (1,741)
Темнопольная микроскопия
Схема темнопольной микроскопии в падающем свете.
Подсветка образца осуществляется сбоку (зеленая линия). Изображение создается светом, рассеивающимся на неоднородностях образца.
Темнопо́льнаямикроскопи́я — вид оптической микроскопии, в которой контраст изображения увеличивают за счет регистрации только света, рассеянного изучаемым образцом. При использовании метода темного поля регистрируются даже незначительные различия в преломляющей способности участков препарата [1]. Основы метода разработаны Р. Зигмонди в 1906 году.
Принцип действия
В оптической микроскопии тёмного поля неоднородности образца рассеивают свет, и этот рассеянный свет формирует изображение исследуемого образца.
Особенностью микроскопа темного поля является способ освещения образца, который осуществляется «сбоку» (зеленая полоса на рисунке). При таком освещении неоднородности, имеющиеся в образце, рассеивают падающий свет и в микроскопе изображение образца наблюдают в рассеянном свете, а освещающий свет «напрямую» не попадает в объектив. Такое освещение называется эпи-подсветкой (EPI-illuminator, EPI—microscope, EPI-objectivelens).
Для прозрачных объектов возможно и контровое освещение, но при этом необходимы дополнительные действия, чтобы убрать "прямое поле": необходимо провести фурье-преобразование полученного изображения и удалить из полученной суммы компоненту, соответствующую "опорной" волне. Это можно сделать, например, с помощью линзы и шаблона, закрывающего небольшой участок в плоскости, где линзой фокусируется "опорная" световая волна. Затем, с помощью второй линзы проводят обратное преобразование Фурье и наблюдают полученную картину визуально. При этом контраст исходного изображения существенно возрастает.
В микроскопах использование метода тёмного поля может быть предусмотрено конструкцией или реализуется установкой дополнительных узлов, таких, как конденсор темного поля ОИ-13.
Преимущества и недостатки
Темнопольная микроскопия хорошо подходит для получения изображений живых и неокрашенных биологических образцов, таких, как отдельные водные одноклеточные организмы.
Основным ограничивающим фактором метода является то, что только малая часть падающего света в итоге формирует изображение, поэтому необходимо применять достаточно мощные источники света, что иногда приводит к повреждениям образца (сейчас иногда используют лазеры).
Темнопольная микроскопия практически лишена артефактов. Однако, интерпретация получаемых изображений требует большой осторожности, поскольку некоторые детали, не видные методом светлопольной микроскопии, видны методом темнопольной микроскопии, и наоборот. На первый взгляд можно было бы сделать предположение, что изображение, получаемое темнопольным методом является просто негативом по отношению кполучаемымсветопольным методом, однако, на самом деле, каждый из этих методов делает видимым разные особенности образца. В светлопольной микроскопии особенности видимы, если они или производят тени, или имеют отличный от окружения коэффициент преломления и при этом достаточно резкие, в то время как, например, плавные неоднородности не могут быть наблюдаемы этим методом, однако, хорошо заметны на картинках, получаемых методом темнопольной микроскопии.
Применение
Темнопольная микроскопия может применяться для прижизненного изучения неокрашенных биологических объектов — простейших, изолированных клеток, тканевых культур, для исследования субклеточных структур живых неокрашенных клеток.
Темнопольная микроскопия в последнее время используется в производстве компьютерных мышей с тем чтобы обеспечить работу оптических мышей в том числе и на прозрачных стёклах, имеющих микроскопические дефекты или пыль на поверхности.
6. Микропрепарат - предметное стекло с расположенным на нем объектом, подготовленным для исследования под микроскопом. Сверху объект обычно накрывается тонким покровным стеклом. Размеры предметных стекол (25 на 75 мм) и их толщина стандартизированы, это облегчает хранение препаратов и работу с ними.
Различают постоянные препараты, в которых объект, накрытый покровным стеклом, заключён в канадский бальзам или другую прозрачную твердеющую среду, и временные, в которых заливка производится в глицерин-желатин, либо объект помещается в физиологический раствор или просто в воду. Постоянные препараты могут сохраняться без изменений многие десятилетия.
Типы препаратов
В зависимости от характера исследуемого объекта, используются различные типы препаратов
· Тотальные препараты. Приготовляются из мелких организмов или небольших их частей. Часто требуют дополнительной обработки в просветляющих растворах. Обезвоженные тотальные препараты могут заключаться в постоянные среды.
· Мазки. Применяются в гематологии при изучении крови, для изучения бактерий и простейших. Могут приготавливаться из тканевых элементов.
· Влажные мазки фиксируют, не давая исследуемому материалу высохнуть. Затем препарат готовят так же, как наклеенные на стекло срезы.
· Сухие мазки высушивают не фиксируя.
· Срезы изготавливаются из фиксированных и залитых в пластический материал (парафин, акрил) объектов на микротоме. Для быстрого получения срезов без длительной процедуры обезвоживания применяют замораживающий микротом.
· Шлифы приготовляются из материалов, не поддающихся резке на микротоме. Используются преимущественно в петрографии.
Техника приготовления нативных (живых) препаратов
1. Приготовление мазка
1) с жидкой питательной среды 2) с плотной питательной среды
культуру берут петлей и каплю наносят на предметное стекло наносят
непосредственно на стекло (без воды) небольшую каплю воды, в ко-
торой эмульгируютисследуемый
материал и распределяют по
площади около 2 см2 .
№ препарата пишут на лицевой стороне, а с обратной стороны местонахождения мазка обводят восковым карандашом.
2. Высушивание
на воздухе высоко над пламенем спиртовки
мазком вверх
3. Фиксация
Цель: - прикрепить микробов к стеклу
- обеззаразить патогенные микробы
- убитые микробы лучше окрашиваются
Методы
физическийхимический
- над пламенем спиртовки мазком - более щадящий по сравнению
вверх (3 раза круговыми движениями) с физическим: мазок погружа-
ют в фиксатор (этанол, ацетон, формалин и др.) на определенное время
4. Окраска
Методы
простыесложные
(ориентировочные) (дифференцирующие)
1) окрашивают одним красителем 1) используют несколько краси-
анилинового ряда - основным или телей (основная и вспомога-
кислым: - кислый фуксин тельные краски, обесцвечи-
-эозин вающие жидкости (этанол)
- метиленовый синий - метод Грама
- окраска по Нейссеру
- генциановыйфиолетовый - Гинса-Бурри (выявление капсул)
- Циля-Нильсена (выявление
спор)
2) используются для изучения 2) используются для определе-
морфологии микроорганизмов ния не только морфологии, но
и химического состава и струк-
туры микробных клеток
Преимущественно для окраски микроорганизмов используют основные красители, в которых красящий ион - катион.
Краситель наливают на поверхность мазка на определенное время, затем мазок промывают до тех пор, пока струи воды не станут бесцветными, осторожно высушивают фильтровальной бумагой. Если мазок правильно окрашен и промыт, то поле зрения абсолютно прозрачно, а клетки микробов интенсивно окрашен.
Клеточная стенка
Вклеточной стенки грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойныйпептидогликан (муреин, мукопептид), составляющий 40—90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos — стенка).
В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид (ЛПС). Липополисахарид наружной мембраны состоит из трех фрагментов: липида А - консервативной структуры, практически одинаковой у грамотрицательных бактерий; ядра, или стержневой, коровой части (лат. core — ядро), относительно консервативной олигосахаридной структуры (наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота); высоковариабельнои О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями (О-антиген). Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы.
При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима,
пенициллина, защитных факторов организма образуются клетки с измененной (часто шаровидной) формой: протопласты — бактерии, полностью лишенные клеточной стенки; сферопласты - бактерии с частично сохранившейся клеточной стенкой. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами.
Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку.
Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, бета-лактомазы) и компоненты транспортных систем.
Цитоплазматическая мембрана
Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым - промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты — впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.
Цитоплазма
Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул — рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Рибосомные РНК (рРНК) - консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, а 23S рРНК - в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.
В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.
Нуклеоид
Нуклеоид — эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие отэукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.
Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности - плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.
Пили
Пили (фимбрии, ворсинки) - нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны - несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми "мужскими" клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.
Жгутики
Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары дисков - у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка - флагеллина (от flagellum - жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.
Споры
Споры - своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат.Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.
Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.
Морфология актиномицетов.
Актиномицеты (от греч. octis – луч, mykes – гриб) – ветвящиеся, нитевидные или палочковидные Гр+ бактерии (по Гр окрашиваются плохо).
В пораженных тканях образуют друзы - образования в виде беловатых зерен, состоящие из густо переплетенных гиф. От них отходят радиально к периферии, наподобие лучей, свободные гифы с утолщениями на концах. Мицелий примитивен, в основном лишен поперечных перегородок. Все морфологические формы способны к истинному ветвлению, особенно на п/ж средах.
Размножение актиномицетов осуществляется двумя различными способами. Мицелий проактиномицетов не дифференцирован и, в конце концов, подвергается распаду на палочковидные или сферические фрагменты – деление фрагментацией мицелия. Культуру на этой стадии легко принять за культуру одноклеточных Гр+ бактерий. У истинных актиномицетов (Euactinomycetes) мицелий устойчив, и размножаются они путем образования на воздушном мицелии специализированных спор (экзо- или эндоспоры), служащих для размножения. По Гр споры окрашиваются в тёмно-фиолетовый цвет, мицелий – в фиолетовый цвет, а друзы – в розовый цвет.
Ультраструктура актиномицетов принципиально не отличается от бактерий. Они имеют клеточную стенку, цитоплазматическую мембрану, которая отграничивает цитоплазму, где содержится нуклеоид, рибосомы, внутриклеточные включения. Мезосомы актиномицетов также являются производными цитоплазматической мембраны. Однако в составе пептидогликана некоторых актиномицетов обнаружены арабиноза, галактоза и др., отсутствующие у бактерий сахара.
Подавляющее большинство актиномицетов являются свободноживущими сапрофитными микроорганизмами. Патогенные актиномицеты вызывают актиномикоз – хроническое заболевание, при котором в различных органах и тканях возникают инфильтраты, абсцессы, а при их вскрытии образуются свищи. При актиномикозе чаще всего поражается челюстно-лицевая область. Следует, однако, отметить, что многие высшие актиномицеты образуют разнообразные антибиотики, такие, как стрептомицин (стрептомицеты), тетрациклин, нистатин, левомицетин, олеандомицин, эритромицин, неомицин, мономицин и многие другие.
Классификация вирусов.
В основу современных классификаций вирусов положены следующие основные критерии:
Тип нуклеиновой кислоты.
Наличие липопротеидной оболочки (оболочечные и безоболочеч-ные), размер и морфология вириона, тип симметрии, число капсомеров.
Круг восприимчивых хозяев.
Патогенность.
Географическое распространение.
Способ передачи.
Антигенные свойства (путем деления на антигенные группы) и др.
Каждая группа признаков детализируется в зависимости от уровня знаний и степени изученности конкретного вируса.
В вирусологии исп<