Общие принципы. Значение б/х анализа для биомед.исслед-ий, клин.испыт, практич. Лаб. Дигностики

Биохимический анализ помогает поставить диагноз, назначить и скорректировать лечение, а также определить стадию заболевания. биомедицинские исследования (изучение функциональных характеристик организма, состояния здоровья, генетического статуса и др.);

12. Принципы определения молекулярной массы биомакромол.

ОСМОМЕТРИЯ (от осмос и греч. metreo-измеряю), совокупность методов определения осмотич. давления Общие принципы. Значение б/х анализа для биомед.исслед-ий, клин.испыт, практич. Лаб. Дигностики - student2.ru . Измерения проводят с помощью приборов - осмометров разл. конструкций. В них р-р (или дисперсионная система) отделен от чистого р-рителя мембраной, проницаемой для р-рителя (дисперсной среды), но непроницаемой для растворенного в-ва (дисперсной фазы). Измеряют избыточное давление, к-рое должно быть приложено к р-ру. чтобы предотвратить его самопроизвольное разбавление диффундирующим сквозь мембрану р-рителем. В статич. осмометрах непосредственно измеряют это давление после достижения равновесия по высоте столба жидкости, к-рая устанавливается в результате проникновения р-рителя через мембрану в р-р. В динамич. осмометрах измеряют зависимость скорости перехода р-рителя через мембрану от перепада давления по обе ее стороны (т. наз. противодавления р). Скорость движения р-рителя w становится равной нулю при р = Общие принципы. Значение б/х анализа для биомед.исслед-ий, клин.испыт, практич. Лаб. Дигностики - student2.ru . Обычно строят графич. зависимость w =f(p)и путем экстраполяции до w = 0 находят осмотич. давлениеДля определения мол. массы измеряют осмотич. давление ряда разб. р-ров с разл. концентрацией исследуемого полимера в одном и том же р-рителе и экстраполируют зависимости Общие принципы. Значение б/х анализа для биомед.исслед-ий, клин.испыт, практич. Лаб. Дигностики - student2.ru /С = f(С) до значений С = 0. Поскольку полимеры полидисперсны, то найденная мол. масса является усредненной по числу молекул.

. Метод гель-хроматографии был предложен Флодином и Поратом в 1959 г. Разделение смесей этим методом основано на способности гелей некоторых природных веществ и гелей отдельных синтетических продуктов ( сефадексы, молсе-лекты и др.) с контролируемой пористостью сортировать и разделять вещества в соответствии с размерами и формой их молекул. При разделении веществ этим методом неподвижной фазой служит гель, состоящий из пространственной сетки, образованной мицеллами коллоида, и жидкости, которая связана с этой сеткой.

Электрофорез в полиакриламидном геле (сокр. электрофорез в ПААГ, ПААГ электрофорез; англ. PAGE, Polyacrylamide Gel Electrophoresis) — метод молекулярной биологии и биохимии, используемый для разделения белков и нуклеиновых кислот, основанный на движении заряженных биологических макромолекул в постоянном электрическом поле. Разделение в полиакриламидном геле происходит за счёт различий заряда разделяемых молекул и отличий молекулярных масс, а также от конфигурации молекул. Разделяют т. н. неденатурирующий, или нативный ПААГ-электрофорез (при котором разделяемые биологические макромолекулы в процессе электрофореза остаются в нативном состоянии) и денатурирующий ПААГ-электрофорез (при котором пробы предварительно денатурируют, в случае нуклеиновых кислот используют непродолжительное нагревание пробы сформамидом либо глиоксалем, для денатурации белков обычно используют кипячение пробы в буфере, содержащем сильный ионный детергент (обычно додецилсульфат натрия) и агент, разрушающий четвертичную структуру белка за счёт разрушения дисульфидных мостиков между глобулами белка и внутри полипептидной цепи — бета-меркаптоэтанолом). В процессе денатурирующего ПААГ-электрофореза молекулы сохраняются в денатурированном состоянии за счёт наличия в геле хаотропных агентов (обычно мочевины) в случае ПААГ-электрофореза нуклеиновых кислот и белков и наличия ионных (например додецилсульфата натрия, цетилтриметиламмоний бромида) и неионных (например tween-20) детергентов.

Химический сенсор — это устройство для обратимого и, как правило, непрерывного, в режиме реального времени (или с небольшим временем отклика) определения концентрации вещества (обычно одного) в той среде, где оно находится, обычно без отбора проб. Причем методика определения «зашита» в это устройство и не меняется, пробоподготовка чаще всего не требуется. В идеале, но не всегда, устройство портативно и может тиражировать в относительно больших масштабах.

Биосенсор - это устройство, включающее биологический чувствительный элемент, тесно связанный с преобразователем либо интегрированный с ним. Обычно биосенсор предназначен для формирования цифрового электрического сигнала, пропорционального концентрации определенного химического соединения или ряда соединений.

Биочип (биологический микрочип, англ. biochip) — микромножество либо матрица с нанесёнными молекулами белков, нуклеиновых кислот, биомакромолекул или биоструктур для одновременного проведения большого числа анализов в одном образце; или электронное устройство, содержащее биологические молекулы.

Биологические микрочипы широко используются в in vitro диагностике. В основе механизма действия биочипов лежит молекулярное распознавание анализируемых молекул молекулами биополимерами, нанесёнными на чип. Это распознавание построено либо на взаимодействии рецепторов с лигандами (например, антител с антигенами), либо на гибридизации комплементарных цепей ДНК. В частности, разработаны биочипы, распознающие короткие олигонуклеотидные последовательности и позволяющие детектировать единичные мутации в генах. Наноразмерная длина олигонуклеотидов, нанесённых на микрочип, является одним из ключевых факторов, определяющих их высокую эффективность и специфичность.

Биоинформа́тика

1. математические методы компьютерного анализа в сравнительной геномике (геномная биоинформатика).

2. разработка алгоритмов и программ для предсказания пространственной структуры белков (структурная биоинформатика).

3. исследование стратегий, соответствующих вычислительных методологий, а также общее управление информационной сложности биологических систем [1].

В биоинформатике используются методы прикладной математики, статистики и информатики. Биоинформатика используется в биохимии, биофизике, экологии и в других областях.

Проточная цитометрия — метод оптического измерения параметров клетки, ее органелл и происходящих в ней процессов.

Методика заключается в выявлении рассеяния света лазерного луча при прохождении через него клетки в струе жидкости, причём, степень световой дисперсии позволяет получить представление о размерах и структуре клетки. Кроме того, в ходе анализа учитывается уровень флуоресценции химических соединений, входящих в состав клетки (аутофлуоресценция) или внесённых в образец перед проведением проточной цитометрии.

Методы разрушения клеток.

Механические методы разрушения клеток – к механическим методам разрушения клеток относятся: растирание, раздавливание, обработка ультразвуком, газодекомпрессионный метод (создание низкого давления), гидроударные, электроударные и комбинированные методы.

К физическим методам дезинтеграции относятся обработка ультразвуком, вращение лопасти или вибратора, встряхивание со стеклянными бусами, продавливание через узкое отверстие под давлением, раздавливание замороженной клеточной массы, растирание в ступке, осмотический шок, замораживание-оттаивание, декомпресия (сжатие с последующим резким снижением давления).

Химические и химико-ферментативные методы более избирательны. Клетки могут быть разрушены толуолом или бутанолом, антибиотиками, ферментами. Культуральную жидкость освобождают от сопутствующих растворимых веществ и фракционируют

Разделение веществ с помощью центрифугирования основано на разном поведении частиц в центробежном поле. Суспензию частиц, помещенную в пробирку, загружают в ротор, установленный на валу привода центрифуги.

В центробежном поле частицы, имеющие разную плотность, форму или размеры, осаждаются с разной скоростью. Скорость седиментации зависит от центробежного ускорения, прямо пропорционального угловой скорости ротора и расстоянию между частицей и осью вращения:

а центробежное ускорение тогда будет равно)

Поскольку один оборот ротора составляет 2п радиан, угловую скорость ротора в оборотах в минуту можно записать так:

Центробежное ускорение обычно выражается в единицах g и называется относительное центробежное ускорение, т. е.

или

При перечислении условий разделения частиц указывают скорость вращения и радиус ротора, а также время центрифугирования. Центробежное ускорение обычно выражают в единицах g, рассчитанных из среднего радиуса вращения столбика жидкости в центрифужной пробирке. На основании уравнения Доулом и Котциасом была составлена номограмма, выражающая зависимость ОЦУ от скорости вращения ротора и радиуса г.

Скорость седиментации сферических частиц зависит не только от центробежного ускорения, но и от плотности и радиуса самих частиц и от вязкости среды суспендирования. Время, необходимое для осаждения сферической частицы в жидкой среде от мениска жидкости до дна центрифужной пробирки, обратно пропорционально скорости седиментации и определяется следующим уравнением:

где t-- время седиментации в секундах, rj -- вязкость среды, гч--радиус частицы, рч--плотность частицы, р -- плотность среды, гм-- расстояние от оси вращения до мениска жидкости, гд-- расстояние от оси вращения до дна пробирки.

Как следует из уравнения, при заданной скорости вращения ротора время, необходимое для осаждения гомогенных сферических частиц, обратно пропорционально квадрату их радиусов и разности плотностей частиц и среды и прямо пропорционально вязкости среды. Поэтому смесь гетерогенных, приблизительно сферических частиц, различающихся по плотности и размерам, можно разделить либо за счет разного времени осаждения их на дно пробирки при данном ускорении, либо за счет распределения седиментирующих частиц вдоль пробирки, устанавливающегося через определенный промежуток времени. При разделении веществ необходимо учитывать и такие важные факторы, как плотность и вязкость среды. Описанными методами можно разделять клеточные органеллы из гомогенатов тканей. Основные компоненты клетки осаждаются в следующей последовательности: сначала целые клетки и их фрагменты, затем ядра, хлоропласты, митохондрии, лизосомы, микросомы и, наконец, рибосомы. Осаждение несферических частиц не подчиняется уравнению, поэтому частицы одинаковой массы, но различной формы осаждаются при разных скоростях. Эта особенность используется при исследовании с помощью ультрацентрифугирования конформации макромолекул.

Наши рекомендации