Лекция №9: Автотрофные и гетеротрофные клетки. Фотосинтез. Хемосинтез
Автотрофные клетки. По способу получения органических соединений все клетки делятся на две группы. Одна группа клеток способна синтезировать органические вещества из неорганических соединений (СО2 и Н2О и т. д.). Из этих бедных энергией соединений клетки синтезируют глюкозу, аминокислоты, а затем и более сложные органические соединения: сложные углеводы, белки и т. д.
Клетки, способные синтезировать органические соединения из неорганических, называются автотрофнымиили автотрофами. Главными автотрофами на Земле являются клетки зеленых растений Автотрофное питание присуще также небольшой группе микроорганизмов.
Гетеротрофные клетки. Клетки, не способные к синтезу органических соединений из неорганических веществ и нуждающиеся, в доставке готовых органических веществ извне, или гетеротрофами. Клетки всех животных, человека, большинства микроорганизмов, а также некоторых растений (например, грибов) являются гетеротрофами.
Фотосинтез. Синтез органических соединений из простых, бедных энергией веществ нуждается в притоке энергии извне. Зеленые растения используют для этой цели световую энергию Солнца. Растительные клетки обладают специальным механизмом, позволяющим им преобразовывать световую энергию в энергию химических связей. Этот процесс называется фотосинтезом.
Процесс фотосинтеза выражается следующим суммарным уравнением:
6СО2 + 6Н2О=C6H12O6+6О2
В ходе этого процесса вещества, бедные энергией (СО2 и Н2О), переходят в углевод - сложное богатое энергией органическое вещество. В результате фотосинтеза выделяется также молекулярный кислород.
Суммарное уравнение фотосинтеза не дает представления о его механизме. Это сложный, многоступенчатый процесс. Центральная роль в нем принадлежит хлорофиллу - органическому веществу зеленого цвета.
В зеленых листьях содержится примерно 1% хлорофилла от сухого веса. Хлорофилл растворяется в спирте, и его можно извлечь настаиванием листьев в спирте. Раствор хлорофилла имеет зеленый цвет и флуоресцирует.
Флуоресценция хлорофилла в растворе объясняется тем, что электроны в молекуле хлорофилла поглощают световую энергию, в результате они покидают орбиту, соответствующую их исходному состоянию, и перескакивают на высшую орбиту, соответствующую их «возбужденному» состоянию. Затем электроны возвращаются обратно на свою первоначальную орбиту, и при этом переходе они отдают поглощенную ими энергию в виде света флуоресценции. Хлорофилл в растворе не способен запасать энергию света. Другая картина наблюдается в клетке, где молекулы хлорофилла встроены в структуру хлоропласта и находятся в соединении с молекулами ферментов, липоидов и других веществ. Хлорофилл в зеленом листе при освещении не флуоресцирует. Поглощенная хлорофиллом энергия света здесь не рассеивается, а преобразуется в энергию химических связей.
Процесс фотосинтеза начинается с освещения хлоропласта видимым светом. Фотон «ударяет» в электрон молекулы хлорофилла, сообщает ему энергию, и электрон переходит в «возбужденное» состояние: он покидает основную орбиту и перескакивает на высшую орбиту. После этого он сразу же падает обратно. При этом избыточная энергия электрона частично переходит в тепло (около 25%), а большей частью передается соединениям, находящимся в клетке, вызывая их превращения.
Часть «падающих» электронов захватывается ионами водорода. В клетке всегда имеется некоторое количество Н+ и ОН -ионов, так как в водном растворе часть молекул воды находится в диссоциированном состоянии:
Н2О = Н++ОН- (1)
Ион водорода присоединяет электрон и превращается в атом водорода:
Н++ е = Н (2)
Ион гидроксила, оставшийся без своего противоиона, немедленно же передает свой электрон другим молекулам или ионам и превращается в свободный радикал ОН:
ОН- = е + ОН (3)
Свободные атомы водорода и ОН -радикалы в химическом отношении весьма активны. Атомы водорода присоединяются к органическому веществу, имеющему сложную структуру и соответственно довольно громоздкое название: никотинамидди - нуклеотидфосфат (сокращенно НАДФ). НАДФ всегда содержится в клетке; присоединив водород, он переходит в восстановленную форму:
НАДФ + 2Н = НАД ФxН2 (4)
Свободные ОН -радикалы взаимодействуют друг с другом, причем образуется молекулярный кислород, выделяющийся в атмосферу, и вода:
4ОН = О2 + 2Н2О (5)
Просуммировав реакции 1, 2, 3 и 5, получим:
2Н2О = О2 + 4Н (6)
Таким образом, молекулярный кислород, образующийся при фотосинтезе, возникает в результате разложения (фотолиза) воды. Это не ферментативный процесс. По своему механизму фотолиз воды сходен с электролизом воды. Вспомните, что при пропускании электрического тока через водный раствор ионы водорода получают электроны от катода и превращаются в атомы водорода (если бы в растворе находился НАДФ, он присоединил бы эти атомы водорода и перешел в НАДФхН2), а ОН -ионы, отдав электроны аноду, превращаются в свободные ОН -радикалы, из которых образуется молекулярный кислород и вода.
Энергия другой части «падающих» электронов, а также электронов, отделяющихся от ионов гидроксила и обладающих еще некоторым запасом энергии, преобразуется в энергию макроэргической фосфатной связи: из АДФ (всегда присутствующей в клетке) и неорганического фосфата (Ф) синтезируется АТФ:
АДФ + Ф=АТФ
Таким образом, избыточная энергия возбужденных электронов при переходе их в исходное состояние порождает три процесса:
Фотолиз воды с образованием молекулярного кислорода.
Восстановление НАДФ с образованием НАДФxН2.
Фотосинтез
“Фотосинтез — это процесс, от которого в конечной инстанции зависят все проявления жизни на нашей планете”.К.А.Тимирязев.
Фотосинтез — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов.
Обычно все организмы, способные из неорганических веществ синтезировать органические, т.е. организмы, способные к фотосинтезу и хемосинтезу, относят к автотрофам.
К автотрофам традиционно относят растения и некоторые микроорганизмы.
Кратко мы говорили о фотосинтезе, когда рассматривали строение растительной клетки, давайте разберем весь процесс поподробнее...
Суть фотосинтеза
это полное, суммарное уравнение фотосинтеза