Гипотезы происхождения митохондрий

Автономность митохондрий послужила основанием для симбиотической гипотезыих происхождения в филогенезе.Впервые она была выдвинута одним из первых исследователей этого органоида Р. Альтманном еще в 1890 г. Эта гипотеза постулирует, что эволюционная предшественница эукариотической клетки могла включить в себя эндосимбионт бактериальной природы, который обладал способностью к дыханию. В пользу этой гипотезы свидетельствует сходство геномов бактерий и митохондрий, сходный способ их размножения, сходство белоксинтезирующих систем, чувствительность рибосом бактерий и митохондрий к одним и тем же антибиотикам.

Однако целый ряд фактов противоречит симбиотической гипотезе. В частности, геном митохондрий намного меньше генома бактерий, рибосомы отличаются от рибосом эукариот и прокариот, иРНК ближе к эукариотическому типу, генетический код имеет уникальные особенности. Поэтому как альтернатива симбиотической гипотезе была выдвинута плазмидная гипотезапроисхождения митохондрий.

Плазмиды представляют собой молекулы ДНК, которые способны автономно реплицироваться и экспрессироваться в бактериальной клетке, а также встраиваться в их кольцевую ДНК и реплицироваться и экспрессироваться совместно с ней. Плазмиды часто захватывают гены бактериальной ДНК и переносят их от одних клеток к другим в результате характерного для бактерий парасексуального процесса - конъюгации. Согласно плазмидной гипотезе предшественницы эукариотических клеток могли встраивать кодируемые геномом дыхательные ферменты в плазмолемму. В ходе дальнейшей эволюции имели место два противоположно направленных процесса: специализированные участки плазмолеммы с дыхательными ферментами инвагинировали в цитоплазму, и одновременно включали в себя с помощью плазмид те гены, продукты которых было выгодно синтезировать на месте. После образования наружной мембраны митохондрии окончательно приобрели нынешнюю автономность.

Пластиды

Пластиды – это двумембранные органоиды, которые характерны для растительных клеток. Они были открыты А. Левенгуком в 1676 г. У высших растений имеется несколько типов пластид, отличающихся составом пигментов, структурой и функциями - хлоропласты, лейкопласты, амилопласты и хромопласты. Кроме высших растений пластиды обнаружены также у некоторых водорослей и простейших. Количество пластид в клетке может колебаться от нескольких десятков до сотен. В среднем клетка высших растений содержит около 30 пластид. На самом деле все пластиды являются разновидностями одного органоида – хлоропласта.

Хлоропласт

Хлоропласты высших растений представляют собой тельца овальной формы шириной 2-4 мкм и длиной 4-10 мкм. Они имеют две мембраны толщиной по 7 нм с межмембранным пространством шириной около 30 нм. Как и у митохондрий, наружная и внутренняя мембраны хлоропласта отличаются проницаемостью и другими физико-химическими свойствами.

Внутренняя мембрана хлоропластов образует протяженные складки – ламеллы. На ламеллах располагаются плоские мембранные цистерны дисковидной формы – тилакоиды,имеющие полость шириной 20-30 нм. Они собраны в комплексы наподобие столбика монет – граны. Тилакоиды уложены в гране таким образом, что между соседними мембранами остается пространство шириной 2 нм. Число тилакоидов в гране может достигать нескольких десятков.

Внутри хлоропласта между мембранными структурами содержится мелкодисперсное вещество, формирующее матрикс,илистрому. У некоторых хлоропластов и других пластид в строме обнаруживаются включения - пластоглобулы, крахмальные зерна и кристаллы белка.

В хлоропластах осуществляется фотосинтез, в результате которого из углекислого газа и воды с использованием энергии света образуется органическое вещество и выделяется кислород. Процесс фотосинтеза подразделяется на световую и темновую фазы.

Световая фаза фотосинтеза идет в мембранах тилакоидов с участием зеленого пигмента хлорофилла, который поглощает кванты света и запускает гидролиз воды (реакция Хилла). Образованные при фотолизе воды электроны передаются по цепи транспорта электронов, сопряженной с протонными насосами и АТФ-синтетазами.

Для более полного использования энергии света в хлоропластах имеются фотосистемы I и II, настроенные на длинноволновую и коротковолновую области спектра. Один реакционный центр фотосистем содержит около 300 молекул хлорофилла. Фотосистема II обеспечивает фотолиз воды и высвобождение из нее электронов и протонов, тогда как фотосистема I отвечает за восстановление акцепторной молекулы никотинамидадениндинуклеотидфосфата (НАДФ). В транспорте электронов, который организован наподобие дыхательной цепи митохондрий, принимают участие цитохромы b6, b и f, медьсодержащий белок пластоциан, аналоги цитохромов – ферродоксины и аналоги убихинона – пластохинон и филлохинон (витамин K1).

Хлорофилл, а также почти все другие компоненты фотосистем I и II, локализованы в мембранах тилакоидов в составе особых частиц – квантосом диамтером около 16 нм. На внутренней поверхности мембраны тилакоидов имеются многочисленные регулярно расположенные выступы высотой 10 нм, которые обладают АТФ-синтетазной активностью. На свету в полостях тилакоидов накапливаются протоны, а строма хлоропласта защелачивается. Таким образом, световая фаза фотосинтеза осуществляется в тилакоидах надмолекулярными комплексами наподобие грибовидных телец митохондрий.

Темновая фазафотосинтеза идет в строме хлоропласта. Она заключается в фиксации углекислого газа и синтезе углеводов с использованием полученных в световой фазе молекул АТФ и восстановленного НАДФ.

Синтез углеводов в строме хлоропласта обеспечивается многоступенчатой ферментативной системой цикла Кальвина, в котором ведущая роль в фиксации углерода принадлежит рибулезодифосфату. В результате химических превращений рибулезодифосфата из шести молекул CO2 образуется одна молекула фруктозо-6-фосфата. В дальнейшем фруктозо-6-фосфат дает начало другим сахарам, крахмалу, гликолипидам. Промежуточные продукты цикла Кальвина могут участвовать также в синтезе жирных кислот и аминокислот.

Геном хлоропластов

Хлоропласты обладают ДНК и рибосомами, которые локализованы в строме. ДНК хлоропластов представлена кольцевыми молекулами массой 80-130 мД. В одном органоиде может содержаться до 40 копий ДНК. Геном хлоропластов содержит около 120 структурных генов, которые кодируют рибосомальные и транспортные РНК, 20 рибосомальных белков, 9 из 12 субъединиц АТФ-синтетазы, часть белков фотосистем и цепи транспорта электронов. Однако, как и у митохондрий, большинство белков хлоропластов кодируется генами клеточного ядра. Белоксинтезирующая система у хлоропластов прокариотического типа с 70S рибосомами. Высокая степень автономности хлоропластов была отмечена еще русским ботаником К. Мережковским в 1905 г.

Наши рекомендации