Транспорт ксенобиотиков через биол мембраны
формы прохождения ксенобиотиков через мембраны: пассивная диффузия; облегченная диффузия, активный транспорт веществ. Активный транспорт веществ, осуществляемый за счет сопряжения термодинамических градиентов.
Основные механизмы переноса веществ через биологические мембраны различают пассивный и активный транспорт.
Пассивный транспорт.При пассивной диффузии ксенобиотики проходят через мембрану в результате случайного молекулярного движения, и величина потока линейно зависит от концентрации и коэффициента проницаемости мембраны для данного вещества.
Гидрофобные группы способствуют увеличению проникающей способности, полярные - ее уменьшению.
Пассивный перенос - это движение вещества по градиенту электрохимического потенциала без затраты энергии.
Облегченная диффузия. Вещества, нерастворимые в липидах, с размером молекулы более 0,3-0,4 нм, не диффундируют через мембраны. Облегченная диффузия происходит по градиенту концентрации без затрат энергии и относится к пассивному транспорту.
Перенос веществ через мембрану может идти пассивным и активным путем. При пассивном поступлении веществ через мембрану основой переноса является диффузия. Скорость диффузии зависит от толщины мембраны и от растворимости вещества в липидной фазе мембраны. Поэтому неполярные вещества, которые растворяются в липидах, легче проходят через мембрану.
Активный транспорт. Активный транспорт веществ либо осуществляется за счет сопряжения электрохимических градиентов, либо выполняется АТФазами. Активный перенос происходит с затратой энергии и идет против градиента электрохимического потенциала.
Существует первичный и вторичный активный транспорт.
Первичный АТ - используется энергия либо АТФ, либо энергия ОВ реакций. Он подразделяется на:
а)электрогенный активный транспорт - первичный активный перенос веществ через мембрану во время АТФазной или ОВ реакциях, сопровождающихся генерацией электрического потенциала
б)электронейтральный активный транспорт - не сопровождающихся генерацией электрического потенциала
Вторичный активный перенос совершается, когда в качестве энергетических источников используются градиенты электрохимических потенциалов других ионов. Приводится в действие за счет энергии, запасенной в градиентах веществ, а не путем прямого гидролиза АТФ.
Пиноцитоз и фагоцитоз.При переносе макромолекул или твердых частиц происходит инвагинация (впячивание или выпячивание) мембраны с последующим образованием пузырьков (везикул), которые сливаются с плазматической мембраной и отрываются во внеклеточное пространство, высвобождая при этом вещества.
Пиноцитоз подразделяется на несколько этапов:
1) адсорбция на мембране молекул вещества;
2) впячивание или выпячивание мембраны, образование пиноцитозного пузырька и отрыв его от мембраны с затратой энергии АТФ;
3) миграция пузырька внутрь протопласта, органеллы или наружу; 4) растворение мембраны пузырька (при действии фермента) или просто ее разрыв.
Мембраноактивные структуры.
В настоящее время показано существование трех типов таких транспортных белков: каналы, переносчики, помпы.
Каналы — это трансмембранные белки, которые действуют как поры. Иногда их называют селективными фильтрами. Транспорт через каналы, как правило, пассивный. Специфичность транспортируемого вещества определяется свойствами поверхности поры. Как правило, через каналы передвигаются ионы. Скорость транспорта зависит от их величины и заряда. Если пора открыта, то вещества проходят быстро. Однако каналы открыты не всегда. Имеется механизм «ворот», который под влиянием внешнего сигнала открывает или закрывает канал. Долгое время представлялась труднообъяснимой высокая проницаемость мембраны (10 мкм/с) для воды — вещества полярного и нерастворимого в липидах. В настоящее время открыты интегральные мембранные белки, представляющие канал через мембрану для проникновения воды — аквапорины. Способность аквапоринов к транспорту воды регулируется процессом фосфорилирования. Было показано, что присоединение и отдача фосфатных групп к определенным аминокислотам аквапоринов ускоряет или тормозит проникновение воды, но не влияет на направление транспорта.
Переносчики — это специфические белки, способные связываться с переносимым веществом. В структуре этих белков имеются группировки, определенным образом ориентированные на наружную или внутреннюю поверхность. В результате изменения конформации белков вещество передается наружу или внутрь. Поскольку для транспорта каждой отдельной молекулы или иона переносчик должен изменить конфигурацию, скорость транспорта вещества в несколько раз меньше, чем происходит перенос через каналы. Показано наличие транспортных белков не только в плазмалемме, но и в тонопласте. Транспорт с помощью переносчиков может быть активным и пассивным. В последнем случае такой транспорт идет по направлению электрохимического потенциала и не требует затрат энергии. Этот тип переноса называется облегченной диффузией. Благодаря переносчикам он идет с большей скоростью, чем обычная диффузия.
Согласно представлениям о работе переносчиков, ион (М) реагирует со своим переносчиком (X) на поверхности мембраны или вблизи нее. Эта первая реакция может включать или обменную адсорбцию, или какое-то химическое взаимодействие. Ни сам переносчик, ни его комплекс с ионом не могут перейти во внешнюю среду. Однако комплекс переносчика с ионом (MX) подвижен в самой мембране и передвигается к ее противоположной стороне. Здесь этот комплекс распадается и высвобождает ион во внутреннюю среду с образованием предшественника переносчика (X´). Этот предшественник переносчика снова передвигается к внешней стороне мембраны, где вновь превращается из предшественника в переносчик, который на поверхности мембраны может соединиться с другим ионом. При введении в среду вещества, способного образовать прочный комплекс с переносчиком, перенос вещества блокируется. Опыты, проведенные на искусственных липидных мембранах, показали, что перенос ионов может проходить под влиянием некоторых антибиотиков, вырабатываемых бактериями и грибами, — ионофоров (рисунок 12). Транспорт с участием переносчиков обладает свойством насыщения, т. е. при увеличении концентрации веществ в окружающем растворе скорость поступлении сначала возрастает, а затем остается постоянной. Это объясняется ограниченным количеством переносчиков.
Переносчики специфичны, т. е. участвуют в переносе только определенных веществ и, тем самым, обеспечивают избирательность поступления. Это не исключает того, что один и тот же переносчик может обеспечивать перенос нескольких ионов. Например, переносчик К+, обладающий специфичностью для этого иона, также переносит Rb+ и Na+, но не транспортирует Сl- или незаряженные молекулы сахарозы. Транспортный белок, специфичный для нейтральных кислот, хорошо переносит аминокислоты глицин, валин, но не аспарагин или лизин. Благодаря разнообразию и специфичности белков осуществляется избирательная их реакция с веществами, находящимися в среде, и, как следствие, их избирательный перенос.
Насосы (помпы) — интегральные транспортные белки, осуществляющие активное поступление ионов. Термин «насос» показывает, что поступление идет с потреблением свободной энергии и против электрохимического градиента. Энергия, используемая для активного поступления ионов, поставляется процессами дыхания и фотосинтеза и в основном аккумулирована в АТФ. Как известно, для использования энергии, заключенной в АТФ, это соединение должно быть гидролизовано по уравнению АТФ + НОН → АДФ + Фн. Ферменты, осуществляющие гидролиз АТФ, называются аденозинтрифосфатазы (АТФазы). В мембранах клеток обнаружены различные АТФазы: К+/Na+–АТФаза; Са2+– АТФаза; Н+–АТФаза. Н+–АТФаза (Н+–насос или водородная помпа) является основным механизмом активного транспорта в клетках растений, грибов и бактерий. Н+– АТФаза функционирует в плазмалемме и обеспечивает выброс протонов из клетки, что приводит к образованию электрохимической разности потенциалов на мембране. Н+–АТФаза переносит протоны в полость вакуоли и в цистерны аппарата Гольджи.
Расчет показывает, что для того, чтобы 1 моль соли диффундировал против градиента концентрации, необходимо затратить около 4600 Дж. Вместе с тем при гидролизе АТФ выделяется 30660 Дж/моль. Следовательно, этой энергии АТФ должно хватить для транспорта нескольких моль соли. Имеются данные, показывающие прямо пропорциональную зависимость, существующую между активностью АТФазы и поступлением ионов. Необходимость молекул АТФ для осуществления переноса подтверждается еще и тем, что ингибиторы, нарушающие аккумуляцию энергии дыхания в АТФ (нарушение сопряжения окисления и фосфорилирования), в частности динитрофенол, тормозят поступление ионов.
Насосы делят на две группы:
1) электрогенные, которые осуществляют активный транспорт иона какого-либо одного заряда только в одном направлении. Этот процесс ведет к накоплению заряда одного типа на одной стороне мембраны;
2) электронейтральные, при которых перенос иона в одном направлении сопровождается перемещением иона такого же знака в противоположном либо перенос двух ионов с одинаковыми по величине, но разными по знаку зарядами в одинаковом направлении.