Анаболизм и катаболизм

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ

Обмен веществ и энергии (метаболизм) — это совокупность химических реакций, протекающих в клетках или в целостном организме и заключающихся в синтезе сложных молекул и новой протоплазмы (анаболизм) и в распаде мо- лекул с освобождением энергии (катаболизм). Энергия необходима для биосин- теза (образования нового вещества), осмотической работы (поглощения и сек- реции клетками разных веществ), механической работы (при движении) и других реакций.

Обмен веществ и энергии — это важнейшее свойство живого, проявляю- щееся на разных уровнях организации живого. Благодаря обмену веществ и энергии происходят рост и размножение, формируются другие важнейшие свойства клеток и организмов. Характерная особенность метаболических функций животных и растительных клеток заключается в том, что они являются ферментативными и сходны между собой, поскольку клетки всех организмов обладают всеми молекулами, играющими центральную роль в метаболизме и обеспечивающими переход энергии одного вида в энергию другого вида. Кроме того в основе регуляции метаболических путей лежат общие механизмы. Бла- годаря этому энергетические процессы у всех живых существ сходны. Жизнь существует и продолжается лишь благодаря энергии (рис. 68).

анаболизм и катаболизм - student2.ru

АНАБОЛИЗМ И КАТАБОЛИЗМ

Основными метаболическими процессами являются анаболизм (ассимиляция) и катаболизм (диссимиляция).

Анаболизм, или ассимиляция (от лат. assimilatio — уподобление), пред- ставляет собой эндотермический процесс уподобления поступающих в клетку веществ веществам самой клетки. Она является «созидательным» метаболизмом.

Важнейшим моментом ассимиляции является синтез белков и нуклеино- вых кислот. Частным случаем анаболизма является фотосинтез, который пред- ставляет собой биологический процесс, при котором органическое вещество синтезируется из воды, двуокиси углерода и неорганических солей под влияни- ем лучистой энергии Солнца. Фотосинтез в зеленых растениях является автотрофным типом обмена.

Катаболизм, или диссимиляция (от лат. dissimilis — расподобление), яв- ляется экзотермическим процессом, при котором происходит распад веществ с освобождением энергии. Этот распад происходит в результате переваривания и дыхания. Переваривание представляет собой процесс распада крупных молекул на более мелкие молекулы, тогда как дыхание является процессом окислитель- ного катаболизма простых Сахаров, глицерина, жирных кислот и дезаминиро- ванных аминокислот, в результате которого происходит освобождение жизнен- но необходимой химической энергии. Эта энергия используется для пополне- ния запасов аденозинтри-фосфата (АТФ), который является непосредственным донором (источником) клеточной энергии, универсальной энергетической «ва- лютой» в биологических системах. Пополнение запасов АТФ обеспечивается реакцией фосфата (Ф) с аденозиндифосфатом (АДФ), а именно:

АДФ + Ф + энергия ® АТФ

Когда АТФ разлагается на АДФ и фосфат, энергия клетки освобождается и используется для работы в клетке. АТФ представляет собой нуклеотид, состоя- щий из остатков аденина, рибозы и трифосфата (трифосфатных групп), тогда как аденозиндифосфат (АДФ) имеет лишь две фосфатные группы. Богатство АТФ энергией определяется тем, что его трифосфатный компонент содержит две фос-фоангидридные связи. Энергия АТФ превышает энергию АДФ на 7000 ккал/моль. Этой энергией обеспечиваются все биосинтетические реакции в клетке в результате гидролиза АТФ до АДФ и неорганического фосфата. Итак, цикл АТФ-АДФ является основным механизмом обмена энергии в живых сис- темах.

К живым системам применимы два закона термодинамики.

В соответствии с первым законом термодинамики (законом сохранения энер- гии) энергия на протяжении химических и физических процессов не создается, не исчезает, а просто переходит из одной формы в другую, пригодную в той или иной мере для выполнения работы, т. е. использование энергии для выпол- нения какой-либо работы или переход энергии из одной формы в другую не со- провождается изменением (уменьшением или увеличением) общего количества энергии. Имея в виду глобальные категории, можно сказать, что вопреки лю- бым физическим или химическим изменениям во Вселенной, количество энер- гии в ней останется неизменным.

В соответствии со вторым законом термодинамики физические и химические процессы протекают в направлении необратимого перехода полезной энергии в хаотическую, неупорядоченную форму и установления равновесия между упорядоченным состоянием и хаотическим, неупорядоченным. По мере приближения к установлению равновесия между упорядоченностью и неупорядоченно- стью и к остановке процесса происходит уменьшение свободной энергии, т.е. той порции общей (полезной) энергии, которая способна производить работу при постоянной температуре и постоянном давлении. Когда количество сво- бодной энергии уменьшается, то повышается та часть общей внутренней энер- гии системы, которая является мерой степени случайности и неупорядоченно- сти (дезорганизации) и называется энтропией. Другими словами, энтропия есть мера необратимого перехода полезной энергии в неупорядоченную форму. Та- ким образом, естественная тенденция любой системы направлена на повыше- ние энтропии и уменьшение свободной энергии, которая является самой полез- ной термодинамической функцией. Живые организмы являются высокоупоря- доченными системами. Для них характерно содержание очень большого коли- чества информации, но они бедны энтропией.

Если Вселенная представляет собой реакционные системы, под которыми по- нимают совокупность веществ, благодаря которым протекают физические и химические процессы, с одной стороны, и окружающую среду, с которой реак- ционные системы обмениваются информацией, с другой стороны, то в соответ- ствии со вторым законом термодинамики в ходе физических процессов или хи- мических реакций энтропия Вселенной увеличивается. Метаболизм живых ор- ганизмов не сопровождается возрастанием внутренней неупорядоченности, т. е. для живых организмов не характерны возрастные энтропии. В любых условиях все организмы, начиная от бактерий и заканчивая млекопитающими, сохраняют упорядоченный характер своего строения. Однако для самой энтропии характерно то, что она возрастает в окружающей среде, причем непрерывное возрас- тание энтропии в окружающей среде обеспечивается существующими в среде живыми организмами. Например, для извлечения свободной энергии анаэроб- ные организмы используют глюкозу, которую они получают из окружающей среды и окисляют молекулярным кислородом, проникающим тоже из среды.

При этом конечные продукты окислительного метаболизма (СО2и H2O) посту- пают в среду, что и сопровождается возрастанием энтропии среды, которое частично происходит из-за рассеивания тепла. Возрастание энтропии в этом случае повышается, кроме того за счет возрастания количества молекул после окисления (C6H12O6+ 6O2® 6СО2 + 6Н2О), т. е. образование из 7 молекул 12 молекул. Как видно, молекулярная неупорядоченность ведет к энтропии.

Для живых существ первичным источником энергии является солнечная радиа- ция, в частности видимый свет, который состоит из электромагнитных волн, встречающихся в виде дискретных единиц, называемых фотонами или кванта- ми света. В живом мире одни живые существа способны улавливать световую энергию, другие получают энергию в результате окисления пищевых веществ. Энергия видимого света улавливается зелеными растениями в процессе фото- синтеза, который осуществляется в хлоропластах их клеток. Благодаря фото- синтезу живые существа создают упорядоченность из неупорядоченности, а световая энергия превращается в химическую энергию, запасаемую в углево- дах, являющихся продуктами фотосинтеза. Таким образом, фотосинтезирую- щие организмы извлекают свободную энергию из солнечного света. В результате этого клетки зеленых растении обладают высоким содержанием свободной энергии.

Получение энергии в результате окисления неорганических веществ происходит при хемосинтезе.

Животные организмы получают энергию, уже запасенную в углеводах, через пищу. Следовательно, они способствуют увеличению энтропии среды. В митохондриях клеток этих организмов энергия, запасенная в углеводах, переводится в форму свободной энергии, подходящей для синтеза молекул других веществ, а также для обеспечения механической, электрической и осмотической работы клеток. Освобождение энергии, запасенной в углеводах, осуществляется в результате дыхания — аэробного и анаэробного. При аэробном дыхании расщепление молекул, содержащих запасенную энергию, происходит путем гликолиза и в цикле Кребса. При анаэробном дыхании действует только гликолиз. Таким образом, жизнедеятельность клеток животных организмов обеспечивается в ос- новном энергией, источником которой служат реакции окисления-восстановления «топлива» (глюкозы и жирных кислот), в процессе которых происходит перенос электронов от одного соединения (окисление) к другому (восстановление). С окислительно-восстановительными реакциями сопряжено фосфорилирование. Эти реакции протекают как при фотосинтезе, так и дыха- нии.

Организм — открытая саморегулирующая система, она поддерживает и репли- цирует себя посредством использования энергии, заключенной в пище, либо генерируемой Солнцем. Непрерывно поглощая энергию и вещества, жизнь не «стремится» к равновесию между упорядоченностью и неупорядоченностью, между высокой молекулярной оранизацией и дезорганизацией. Напротив, для живых существ характерна упорядоченность как в их структуре и функциях, так и в превращении и использовании энергии. Таким образом, сохраняя внут- реннюю упорядоченность, но получая свободную энергию с солнечным светом или пищей, живые оранизмы возвращают в среду эквивалентное количество энергии, но в менее полезной форме, в основном в виде тепла, которое, рассеи- ваясь, уходит во Вселенную.

Процессы обмена веществ и энергии подвержены регуляции, причем существует множество регулирующих механизмов. Главнейшим механизмом регуляции метаболизма является контроль количества ферментов. К числу регулирующих механизмов относят также контроль скорости расщепления субстрата ферментами, а также контроль каталитической активности ферментов. Метаболизм подвержен так называемому обратному аллостерическому контролю, заключающемуся в том, что во многих биосинтетических путях первая реакция может быть ингибирована (подавлена) конечным продуктом. Можно сказать, что такое ингибирование происходит по принципу обратной связи. В регуляции обмена веществ и энергии имеет значение и то, что метаболические пути синте- за и распада почти всегда разобщены, причем у эукариотов это разобщение усиливается компартментализацией клеток. Например, местом окисления жир- ных кислот в клетках являются митохондрии, тогда как их синтез происходит в цитозоле. Многие реакции метаболизма подвержены некоторой регуляции со стороны так называемого энергетического статуса клетки, показателем которого является энергетический заряд, определяемый суммой молярных фракций АТФ и АДФ. Энергетический заряд в клетке всегда постоянен. Синтез АТФ ингибируется высоким зарядом, тогда как использование АТФ стимулируется таким же зарядом.

Наши рекомендации