Бактерии делят на 2 домена: «Bacteria» и «Archaea»

Основные этапы развития микробиологии и имунологии.

описательный период

· Конец 17-сер.19в.;

· Открытие мира микроорганизмов, описание их внешнего вида;

· А.Левенгук – открытие микроорганизмов.

Физиологический (пастеровский) период

· Сер. 19 – начало 20 века;

· Изучается жизнедеятельность микробной клетки, открытие болезнетворных бактерий

· Левенгук

· Кох

Открытие Л.Пастера

· Бактериальная природа брожения

· Установление причин болезней вина и пива

· Открытие воздушной болезни шелковичных червей

· Создание первой искуственной вакцины (против сибирской язвы).

· Вакцинация

30 апреля 1878 – день считается днём рождения медицинской микробиологии.

Заслуги Р.Коха

· Открытие патогенных микроорганизмов

· Разработка основных правил идентификации патогенных микробов как этиологических антигенов (триада Генле-Коха)

· Другие открытия

Иммунологическийц период

· Начало и серидина 20 века (Илья Мечников – клеточная теория иммунитета; П.Эрлих, А.Флеминг – открытие пеницилина лизоцим, Г.Домак применил сульфаниламиды в медицинской практике, Д.Ивановский)

Современный перид (середина 20 века до сегодняшних дней) А.Львов – открытие провируса, Р.Портер и Дж.Эдельман – структура антител.

· Бернет – теория иммунитета. Галло и Монтанье – ВИЧ. С.Пруссинер – открытие прионов.

Николай Фёдорович Гамалея - Создатель интенсивного метода прививки — он разработал и применил на практике план мероприятий по борьбе с эпидемиями на местах. Открыл холероподобный птичийвибрион, представил противохолерную вакцину. В1894-1896 годах Гамалея описал явление так называемого гетероморфизма бактерий. Н. Гамалея впервые выдвинул положение о существовании скрытых форм инфекции.

Павел Феликсович Здродовский - Изучал проблему риккетсиозов, разработал методы их профилактики с помощью живых и химических вакцин.

Дмитрий Иосифович Ивановский -Ивановский положил начало вирусологии, выросшей в самостоятельную область науки. Началось все с открытия вируса мозаичной болезни табака. Ивановский занимался также изучением процесса спиртового брожения и влияния на него кислорода, хлорофилла и других пигментов зелёных листьев, участвующих в процессе фотосинтеза.

Анато́лий Алекса́ндрович Сморо́динцев –Создал вакцины против гриппа, клещевого энцефалита, кори, эпидемического паротита.

Михаи́л Петро́вич Чумако́в -основатель и первый директор Института полиомиелита и вирусных энцефалитов РАМН. Принял участие (совместно с Л. А. Зильбером и другими) в изучении этиологии весенне-летнего энцефалита и открытии вызывающего его вируса клещевого энцефалита. Организовал массовое производство, провёл клинические испытания и внедрил вакцину против полиомиелита, разработанную американским учёным Альбертом Сэйбином.

Зинаида Виссарионовна Ермольева - Занималась изучением холеры. Открыла светящийся холероподобный вибрион, носящий её имя. В 1942 году впервые в СССР получила пенициллин (крустозин ВИЭМ), впоследствии активно участвовала в организации его промышленного производства в Советском Союзе. Создатель антибиотиков в СССР.

Виктор Михайлович Жданов -Основные труды по вирусным инфекциям (инфекционному гепатиту и гриппу), эволюции инфекционных болезней, классификации вирусов, по проблемам молекулярной биологии вирусов.. Ликвидировал оспу. Последние годы жизни Виктор Михайлович Жданов посвятил изучению ВИЧ-инфекции, которую считал глобальной проблемой здравоохранения.


3. Микроорганизмы и их положение в системе живого мира. Номенклатура бактерий. Принципы классификации.

Для бактерий ре­комендованы следующие таксономические категории: класс, отдел, порядок, семейство, род, вид. Название вида соответствует бинар­ной номенклатуре, т. е. состоит из двух слов. Например, возбудитель сифилиса пишется как Treponema pallidum. Первое слово — название рода и пишется с прописной буквы, второе слово обозначает вид и пишется со строчной буквы. При повторном упоминании вида родовое название сокращается до на­чальной буквы, например: Т. pallidum.

Бактерии относятся к прокариотам, т. е. доядерным организмам, поскольку у них имеется примитивное ядро без оболочки, ядрышка, гистонов, а в цитоплазме отсутс­твуют высокоорганизованные органеллы (митохондрии, аппарат Гольджи, лизосомы и др.).

Бактерии делят на 2 домена: «Bacteria» и «Archaea».

В домене «Bacteria» можно выделить следующие бактерии:

1) бактерии с тонкой клеточной стенкой, грамотрицательные;

2) бактерии с толстой клеточной стенкой, грамположительные;

3) бактерии без клеточной стенки (класс Mollicutes — микоплазмы)

Архебактерии не содержат пептидогликан в клеточной стенке. Они имеют особые рибосомы и рибосомные РНК (рРНК).

Среди тонкостенных грамотрицательных эубактерий различают:

• сферические формы, или кокки (гонококки, менингококки, вейлонеллы);

• извитые формы — спирохеты и спириллы;

• палочковидные формы, включая риккетсии.

К толстостенным грамположительным эубактериям относят:

• сферические формы, или кокки (стафилококки, стрептококки, пневмококки);

• палочковидные формы, а также актиномицеты (ветвящиеся, нитевидные бактерии), коринебактерии (булавовидные бак­терии), микобактерии и бифидобактерии.

Тонкостенные грамотрицательные бактерии:Менингококки, гонококки, Вейлонеллы, Палочки, Вибрионы, Кампилобактерии, Хеликобактерии, Спириллы, Спирохеты, Риккетсии, Хламидии.

Толстостенные грамположительные бактерии:Пневмококки, Стрептококки, Стафилококки, Палочки, Бациллы, Клостридии, Коринебактерии, Микобактерии, Бифидобактерии, Актиномицеты.


4. Структура бактериальной клетки.Основные отличия прокариотов и эукариотов. Функции отдельных структурных элементов бактериальной клетки.Особенности химического состава клеточных стенок грамположительных и грамотрицательных бактерий.

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и яд­ра, называемого нуклеоидом. Имеются дополни­тельные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях спо­собны образовывать споры.

Отличия по строению клетки

1) У прокариот нет ядра, а у эукариот есть.

2) У прокариот из органоидов имеются только рибосомы (мелкие, 70S), а у эукариот, кроме рибосом (крупных, 80S), имеется множество других органоидов: митохондрии, ЭПС, клеточный центр, и т.д.

3) Клетка прокариот гораздо меньше клетки эукариот: по диаметру в 10 раз, по объему – в 1000 раз.

1) У прокариот ДНК кольцевая, а у эукариот линейная

2) У прокариот ДНК голая, почти не соединена с белками, а у эукариот ДНК соединена с белками в соотношении 50/50, образуется хромосома

3) У прокариот ДНК лежит в специальной области цитоплазмы, которая называется нуклеоид, а у эукариот ДНК лежит в ядре.

Постоянные компоненты бактериальной клетки.

Нуклеоид – эквивалент ядра прокариот

Клеточная стенка – отличается у Гр+ и Гр – бактерий. Определяет и сохраняет постоянную форму, обеспечивает связь с внешней средой, определяет антигенную специфичность бактерий, обладает важными иммуноспецифическими свойствами; нарушение синтеза клеточной стенки ведет к образованию L-форм бактерий.

Гр+ : такая окраска связана с содержанием в КС тейховыми и дипотейхоевыми кислотами, которые пронизывают его насквозь и закрепляют в цитоплазме. Пептидогликан толстый, состоит плазматической мембраны, связанной бета-гликозидными связями.

Гр -:тонкий слой пептидогликанов, нарудная мембрана представлена липополисахаридными гликокопротеинами, гликолипидами.

ЦПМ –состоит из липопротеинов. Воспринимает всю химическую информацию, поступающую в клетку. Является основным барьером. Участвует процессе репликации нуклеоида и плазмид; содержит большое количество ферментов; Участвует в синтезе компонентов клеточной стенки.

Мезосомы – аналоги митохондрий в бактериальной клетке

Рибосомы 70S - многочисленные мелкие гранулы, располагающиеся в в цитоплазме.

НЕПОСТОЯННЫЕ:

Жгутики: состоят из белка флагеллина, берут начало от ЦПМ, основная функция -двигательная.

Пили: за счет них идет прикрепление к клетке-хозяину

Плазмиды. Капсула, Споры, Включения.

Основные методы изучения морфологии бактерий. Бактериоскопический метод. Методы окраски микробов и их отдельных структур. Методы микроскопии (люминесцентная, темнопольная, фазово-контрастная, электронная).

Микроскопический – патологический материал – мазок – микроскопия.

Морфологические свойства бакте­рий.Бактерии— микроорганизмы, не имеющие оформлен­ного ядра (прокариоты).

Бактерии имеют разнообразную форму и довольно сложную структуру, определяющую многообразие их функциональной дея­тельности. Для бактерий характерны четыре основные формы: сферическая (шаровидная), цилиндрическая (палочковидная), извитая и нитевидная.

Методы окраски. Окраску мазка производят просты­ми или сложными методами. Простые за­ключаются в окраске препарата одним красителем; сложные методы (по Граму, Цилю — Нильсену и др.) включают последо­вательное использование нескольких красителей и имеют диффе­ренциально-диагностическое значение. Отношение микроорганиз­мов к красителям расценивают как тинкториальные свойства. Существуют специальные методы окраски, которые используют для выявления жгутиков, клеточной стенки, нуклеоида и разных цитоплазматических включений.

При простых методах мазок окрашивают каким-либо одним красителем, ис­пользуя красители анилинового ряда (основные или кис­лые). Если красящий ион (хромофор) — катион, то краситель обладает основными свойствами, если хромо­фор - анион, то краситель имеет кислые свойства. Кис­лые красители — эритрозин, кислый фуксин, эозин. Ос­новные красители — генциановый фиолетовый, кристал­лический фиолетовый, метиленовый синий, основной фуксин. Преимущественно для окраски микроорганизмов используют основные красители, которые более интенсивно связываются кислыми компонентами клетки. Из сухих красителей, продающихся в виде порошков, готовят на­сыщенные спиртовые растворы, а из них — водно-спирто­вые, которые и служат для окрашивания микробных кле­ток. Микроорганизмы окрашивают, наливая краситель на поверхность мазка на определенное время. Окраску основным фуксином ведут в течение 2 мин, метиленовым синим — 5—7 мин. Затем мазок промывают водой до тех пор, пока стекающие струи воды не станут бесцветными, высушивают осторожным промоканием фильтровальной бумагой и микроскопируют в иммерсионной системе. Ес­ли мазок правильно окрашен и промыт, то поле зрения совершенно прозрачно, а клетки интенсивно окрашены.

Сложные методы окраски применяют для изуче­ния структуры клетки и дифференциации микроорганиз­мов. Окрашенные мазки микроскопируют в иммерсион­ной системе. Последовательно нанести на препа­рат определенные красители, различающиеся по химическому составу и цвету, протравы, спирты, кислоту и др.

Существуютнесколько основных окрасок: по Граму, по Цилю-Нельсону, по Ауески, Нейссера, Бури-Гинса.

Фазово-контрастное устройствоможет быть установлено на любом микроскопе. Фазово-контрастная микроскопия основана на явлении интерференции света, прошедшего и не прошедшего через объект, и позволяет наблюдать прозрачные объекты, отличающие­ся от окружающей среды (или других структур клетки) по показателю преломления или по толщине и вызывающие изменение фазы прошедшего через них света. Благодаря специ­альному приспособлению в объективе (фазовая пластинка) и в конденсоре (кольцевая диафрагма) эти объекты выглядят более темными (позитивный фазовый контраст) или более светлыми (негативный фазовый контраст) по сравнению с окружающей средой.

- Темнопольная микроскопия (ультрамикроскопия) основана на явлении светорас­сеивания. При темнопольной микроскопии в объектив попадают только лучи, рассеянные объектом, и не попадают прямые лучи от осветителя. Поэтому наблюдаемые микроорга­низмы кажутся ярко светящимися на темном фоне. Темнопольную микроскопию применяют для прижизненного изучения лептоспир, спиро­хет, а также микроорганизмов слишком мелких, чтобы их можно было различить при обычном светлопольном освещении. Для темнопольной микроскопии используют обыч­ные объективы и специальные темнопольные конденсоры.

- Люминесцентная микроскопия основана на использовании явления флюоресцен­ции. Применяют специальные люминесцентные микроскопы или приспособления к обыч­ным микроскопам. Так как большинство микроорганизмов не обладает собственной люминесценцией, то их предварительно окрашивают (флюорохромируют) сильно разве­денными растворами специальных красителей (флюорохромы), которые связываются с определенными структурами клетки.

- Электронная микроскопия. Изображение в электронном микроскопе образуется не с помощью световых лучей и стеклянных линз, а с помощью потока электронов, который фокусируется электрическим или магнитным полем. Разрешающая способность примерно в 2000 раз больше, чем светового (0,2 мкм), и с его помощью можно увидеть даже крупные молеку­лы. Применение электронного микроскопа значительно расширило знания о вирусах, фагах и других микроорганизмах.


6. Рост и размножение бактерий. Фазы размножения.

Жизнедеятельность бактерий характеризуется ростом — фор­мированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размноже­нием — самовоспроизведением, приводящим к увеличению ко­личества бактериальных клеток в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования. Грамположительные бактерии делятся путем врастания синтези­рующихся перегородок деления внутрь клетки, а грамотрицательные — путем перетяжки, в результате образования гантелевидных фигур, из которых образуются две одинаковые клетки.

Делению клеток предшествует репликация бактериальной хро­мосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной ни­тью), приводящая к удвоению молекул ДНК бактериального ядра — нуклеоида.

Репликация ДНК происходит в три этапа: инициация, элон­гация, или рост цепи, и терминация.

Размножение бактерий в жидкой питательной среде.Бактерии, засеянные в определенный, не изменяющийся объем питатель­ной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и пре­кращению роста бактерий. Культивирование бактерий в такой си­стеме называют периодическим культивированием, а культуру — периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивиро­вание называется непрерывным, а культура — непрерывной.

При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов:

1.лаг-фаза;

2.фаза логарифмического роста;

Бактерии делят на 2 домена: «Bacteria» и «Archaea» - student2.ru 3.фаза стационарного роста, или максимальной концентрации

бактерий;

4.фаза гибели бактерий.

Эти фазы можно изобразить графически в виде отрезков кри­вой размножения бактерий, отражающей зависимость логариф­ма числа живых клеток от времени их культивирования.

Лаг-фаза — период между по­севом бактерий и началом размножения. Продолжительность лаг-фазы в среднем 4—5 ч. Бактерии при этом увеличиваются в раз­мерах и готовятся к делению; нарастает количество нуклеино­вых кислот, белка и других компонентов.

Фаза логарифмического (экспоненциального) роста является периодом ин­тенсивного деления бактерий. Продолжительность ее около 5— 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20—40 мин. Во время этой фазы бактерии наиболее ра­нимы, что объясняется высокой чувствительностью компонен­тов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др.

Затем наступает фаза стационарного роста, при которой количество жиз­неспособных клеток остается без изменений, составляя макси­мальный уровень (М-концентрация). Ее продолжительность вы­ражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования.

Завершает процесс роста бактерий фаза гибели, характеризующаяся отмиранием бак­терий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжи­тельность ее колеблется от 10 ч до нескольких недель. Интен­сивность роста и размножения бактерий зависит от многих фак­торов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.

Размножение бактерий на плотной питательной среде.Бактерии, растущие на плотных питательных средах, образуют изолирован­ные колонии округлой формы с ровными или неровными кра­ями (S- и R-формы), различной консистенции и цве­та, зависящего от пигмента бактерий. Пигменты, растворимые в воде, диффундируют в питатель­ную среду и окрашивают её. Дру­гая группа пигментов нерастворима в воде, но растворима в орга­нических растворителях. И, нако­нец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.

Наши рекомендации