Научный метод структура научного познания
XX век — век науки. Ее авторитет в обществе прочен и устойчив. Общее доверие к науке настолько велико, что мы порой просто отождествляем понятия «знание» и «научное знание», считая их почти синонимами. Но это далеко не так. Существует немало видов знания, источником которых является отнюдь не наука, а наш, к примеру, житейский опыт, эстетические впечатления, религиозное откровение и т.д. Однако знание, добываемое наукой, явно выбивается из этого общего ряда, намного превосходя остальные виды своей полнотой, убедительностью и чисто практическими силой и пользой. За счет чего же ему это удается? В основном за счет метода, которым оно добывается, а также при помощи особого способа его организации и построения.
Сущность научного метода можно представить очень просто: это такая процедура получения научного знания, с помощью которой его можно воспроизвести, проверить и передать другим. По большому счету человека всегда интересует два вопроса: ЧТО такое реальность и К А К с ней обращаться. Метод дает ответы на вопросы второго типа, и во многих случаях именно они имеют решающее значение.
В одной старой китайской притче некий щедрый рыболов делится своим уловом с голодным крестьянином. Но когда тот приходит за рыбой и во второй, и в третий раз, становится ясно, что много проще решить проблему, научив крестьянина самого ловить рыбу. Научить, как ловить рыбу, — значит дать метод, т.е. систему правил, приемов практической деятельности. То же относится и к деятельности познавательной. Знать, как добывается знание, — значит дать всем желающим возможность, во-первых, воспроизводить и проверять достоверность уже имеющегося знания, а во-вторых — получать новое, ранее неизвестное.
Наука тем отличается от других форм общественного сознания, что в ней методы получения нового знания стали предметом самостоятельного анализа и открытого обсуждения. В итоге родилась самостоятельная научная дисциплина — «Методология научного познания», о некоторых современных проблемах которой будет рассказано в следующих параграфах.
2.1. Методы научного познания
Греческое слово «методос» означает путь к чему-либо. В научном познании этот путь, очевидно, должен приводить к истине. Если такой путь найден, т.е. известны средства, приемы и спосо-
бы достижения цели, то его можно показать всем, сделать всеобщим достоянием и, следовательно, обеспечить безусловную воспроизводимость научного знания. И когда по этому пути пойдут многие, он неизбежно превратится в хорошо накатанную, привычную дорогу, т.е. станет всеобщим, устоявшимся способом получения нового знания. Четко фиксируя такие «пути», наука и обеспечивает свойства объективности и общеобязательности добываемого знания.
Метод есть совокупность правил, приемов познавательной и практической деятельности, обусловленных природой и закономерностями исследуемого объекта.
Таких правил и приемов существует великое множество. Часть из них опирается на обычную практику обращения человека с предметами материального мира, другие предполагают более глубокое обоснование — теоретическое, научное. Научные методы — это по сути оборотная сторона теорий. Всякая теория объясняет, что собой представляет тот или иной фрагмент реальности. Но объясняя, она тем самым показывает, как с этой реальностью следует обращаться, что с ней можно и нужно делать. Теория как бы «сворачивается» в метод. В свою очередь метод, направляя и регулируя дальнейшую познавательную деятельность, способствует дальнейшему развертыванию и углублению знания. Человеческое знание, по существу, и приобрело научную форму именно тогда, когда «догадалось» отследить и сделать ясными методы своего появления на свет.
Современная система методов познания отличается высокой сложностью и дифференцированностью. Существует множество возможных способов классификации методов: по широте «охвата» реальности, по степени общности, по применимости на разных уровнях познания и т.д.
Самое «грубое» и простое разделение научных методов подразумевает распределение их по двум группам — общенаучные и специально-научные методы познания.
Первая группа методов характеризует приемы и способы исследования во всех науках и на всех уровнях научного познания. К ним относятся методы наблюдения, эксперимента, анализа, синтеза, индукции, дедукции и т.д. Эти методы настолько универсальны, что работают даже на уровне обьщенного сознания. Охарактеризуем вкратце наиболее важные из них.
Исходным методом научного познания считается наблюдение, т.е. преднамеренное и целенаправленное изучение объектов, опирающееся на чувственные способности человека — ощущения и
восприятия. В ходе наблюдения возможно получение информации лишь о внешних, поверхностных сторонах, качествах и признаках изучаемых объектов. Научное наблюдение характеризуется рядом особенностей:
• целенаправленностью и избирательностью — внимание наблюдателя фиксируется только на тех свойствах объекта, которые связаны с предварительно поставленной задачей;
• объективностью, т.е. возможностью контроля результатов наблюдения либо за счет повторного наблюдения, либо путем использования других методов исследования;
• полнотой, точностью, однозначностью и т.д.
Итогом научных наблюдений всегда является описание исследуемого объекта, фиксируемое в виде текстов, рисунков, схем, графиков, диаграмм и т.д. С развитием науки наблюдение становится все более сложным и опосредованным путем использования различных технических устройств, приборов, измерительных инструментов. Техническая оснащенность процедуры наблюдения, с одной стороны, колоссально увеличила ее возможности, а с другой — породила серьезную проблему достоверности знаний, получаемых с помощью приборов. Современные приборы слишком далеко ушли от непосредственных ощущений человека, и поэтому безвозвратно пропала наглядность и образная простота получаемой картины.
Ведь одно дело — наблюдать в телескоп планеты или звезды, которым от нашего наблюдения, как говорится, ни жарко, ни холодно, и совсем другое — «наблюдать». какой-либо квантовый объект (электрон или протон). Всякое взаимодействие нашего макроприбора с таким микрообъектом нарушает состояние последнего. В результате мы получаем сведения о квантовом явлении, искаженные вмешательством прибора. В классической физике подобные искажения можно учесть и по результатам измерений установить «истинное» состояние объекта, не зависимое от наблюдателя. В квантовой физике это невозможно. Как любили повторять создатели квантовой механики, «для того чтобы узнать свойства пудинга, его надо съесть».
Но «съев» квантовый объект, мы его разрушим и, следовательно, не сможем еще раз проверить и уточнить состояние квантовой системы. Поэтому в квантовой физике «наблюдаемое» и «наблюдатель» неотделимы друг от друга. Разумеется, квантовые объекты существуют «сами по себе» и без всяких наблюдателей. Однако описание их свойств невозможно без точного указания на тот класс при-
боров, в котором эти свойства регистрируются. И в разных классах приборов эти свойства будут различны (в одних — волновые, в других — корпускулярные). Другими словами, квантовая система становится объектом наблюдения только в том случае, если указан точный способ измерения ее свойств.
Измерение — познавательная процедура, в которой устанавливается отношение одной (измеряемой) величины, характеризующей изучаемый объект, к другой, принятой за постоянную (т.е. единицу измерения). Измерение органически связано с наблюдением и образует вместе с ним фундаментальную основу естествознания. Именно переход к фиксации количественных (однозначно измеряемых) параметров материальных тел позволил естественным наукам добиться нынешних строгости и точности знания. Измерительные процедуры могут даже опережать теоретическое объяснение: измерять температуру тел научились гораздо раньше, чем поняли физическую природу теплоты.
Еще одним важнейшим методом естественно-научного познания является эксперимент. С введением в практику науки экспериментального метода ученые из наблюдателей превратились в «естествоиспытателей». То есть данный метод предполагает активное воздействие экспериментатора на изучаемый объект и условия его существования.
Эксперимент (от лат. experimentum — проба, опыт) — способ активного, целенаправленного исследования объектов в контролируемых и управляемых условиях. Эксперимент включает процедуры наблюдения и измерения, однако не сводится к ним. Ведь экспериментатор имеет возможность подбирать необходимые условия наблюдения, комбинировать и варьировать их, добиваясь «чистоты» проявления изучаемых свойств, а также вмешиваться в «естественное» течение исследуемых процессов и даже искусственно их воспроизводить.
Главной задачей эксперимента, как правило, является проверка различных гипотез и предсказаний теории. Однако в ходе такой проверки нередко обнаруживаются и неожиданные, не предусмотренные гипотезой новые свойства объекта. Классическим примером такого рода являются эксперименты Э. Резер-форда, в 1909 г. бомбардировавшего альфа-частицами (ядрами атомов гелия) металлическую фольгу. Его прибор был несложен: поток альфа-частиц, испускаемый ампулой с радием, проходил через диафрагму, которая выделяла из общей массы узкий пучок частиц и направляла его на экран из сернистого цинка, где на-
блюдались сцинтилляции (крошечные вспышки при столкновении частиц с экраном). Поставив на пути альфа-частиц фольгу, Э. Резерфорд обнаружил, что вместо резкого изображения узкой щели диафрагмы на экране появляется размытая полоса, т.е. небольшое количество частиц (примерно 2%) отклонялось от прямого пути. По тогдашним представлениям о строении атома (модель Дж. Томсона) это было необъяснимо: в предполагаемой положительно заряженной внутриатомной среде с вкрапленными в нее электронами тяжелым альфа-частицам просто не было преград, ведь по сравнению с ними электроны — не более чем горошины перед пушечными ядрами. А последовавшее далее предположение Э. Резерфорда о том, не могут ли альфа-частицы отскакивать от фольги назад, казалось и вовсе бессмысленным. Однако помощники великого английского физика, просчитав за два года более миллиона сцинтилляций, доказали, что назад отскакивает, как мяч от сетки, примерно одна альфа-частица из восьми тысяч. Предложенное Э. Резерфордом объяснение этого неожиданного феномена известно сегодня как «планетарная модель атома»: отраженные назад альфа-частицы сталкивались с ядрами атомов фольги. А небольшое количество отражений определяется тем, что, хотя практически вся масса атома сосредоточена в ядре, оно занимает лишь ничтожную часть его объема (как Солнце в нашей планетной системе). Эти представления ныне настолько привычны, что кажется, будто они совершенно тривиальны. Но чтобы сформулировать их в первый раз, понадобились недюжинные научные терпение и смелость. А опирались последние как раз на неопровержимые результаты эксперимента.
Подобные эксперименты называют исследовательскими. Другой тип эксперимента — проверочный — предназначен для подтверждения тех или иных теоретических предположений. Так, существование множества элементарных частиц первоначально было «вычислено» теоретически, и лишь позднее подтверждено рядом целенаправленных экспериментов.
Экспериментальный метод, возникнув в XVII в. в физике (Г. Галилей, У. Гильберт), затем распространился на все области естествознания. За четыре прошедших столетия, разумеется, существенно изменилась техническая оснащенность экспериментальной практики. Многие нынешние экспериментальные установки (ускорители заряженных частиц, например) представляют собой огромные и дорогостоящие сооружения. Однако не понизилось значение и мысленных экспериментов, для которых не тре-
буется создания сложных технических средств. В XVIIв., например, Г.Галилей с помощью мысленного эксперимента сформулировал важнейший для физики принцип инерции. А в XXв. другой гений физики — А. Эйнштейн — блестяще использовал тот же прием, вообразив свободно падающий в поле тяготения лифт и обнаружив при этом, что, находясь внутри такого лифта, никаким способом нельзя определить, движется ли ускоренно лифт в поле тяготения или он покоится, а поле тяготения при этом исчезает. Результатом этого мысленного эксперимента стал принцип эквивалентности инерционной и гравитационной масс, положенный в основу общей теории относительности.
В целом же все разнообразные виды научных экспериментов составляют мощную эмпирическую базу естествознания. Эксперимент является как ведущим методом, так и одним из решающих критериев истинности научного знания.
Анализ как общенаучный метод познания представляет собой процедуру мысленного (или реального) расчленения, разложения объекта на составные элементы в целях выявления их системных свойств и отношений.
Синтез — операция соединения выделенных в анализе элементов изучаемого объекта в единое целое.
Индукция — способ рассуждения или метод получения знания, при котором общий вывод делается на основе обобщения частных посылок. Индукция может быть полной и неполной. Полная индукция возможна тогда, когда посылки охватывают все явления того или иного класса. Однако такие случаи встречаются редко. Невозможность учесть все явления данного класса заставляет использовать неполную индукцию, конечные выводы которой не имеют строго однозначного характера.
Дедукция — способ рассуждения или метод движения знания от общего к частному, т.е. процесс логического перехода от общих посылок к заключениям о частных случаях. (Помните Шерлока Холмса?) Дедуктивный метод может давать строгое, достоверное знание при условии истинности общих посылок и соблюдении правил логического вывода.
Аналогия — прием познания, при котором наличие сходства, совпадение признаков нетождественных объектов позволяет предположить их сходство и в других признаках. Так, обнаруженные при изучении света явления интерференции и дифракции позволили сделать вывод о его волновой природе, поскольку раньше те же свойства были зафиксированы у звука, волновой характер ко-
торого был уже точно установлен. Аналогия — незаменимое средство наглядности, изобразительности мышления. Но еще Аристотель предупреждал, что «аналогия не есть доказательство»! Она может давать лишь предположительное знание.
Абстрагирование — прием мышления, заключающийся в отвлечении от несущественных, незначимых для субъекта познания свойств и отношений исследуемого объекта с одновременным выделением тех его свойств, которые представляются важными и существенными в контексте исследования. Абстрагирование является очень острым и эффективным инструментом теоретического разума, позволяющим хирургически точно «вырезать» из хаотичного переплетения реальных связей и отношений именно те, которые представляют сущность изучаемого объекта. В рамках обыденного познания «абстрактное мышление» означает, как правило, мышление бедное, бессодержательное, одностороннее. Происходит это потому, что на данном уровне фактически нет средств различения абстракций существенных и несущественных, случайных и необходимых. (Когда мы сердимся на кого-то и даже позволяем себе награждать другого человека разными обидными характеристиками; или когда мы голосуем за того или иного политика просто потому, что он «симпатичный», мы демонстрируем примеры самого настоящего абстрактного, т.е. отвлеченного, мышления. Только «отвлекаются» при этом и становятся причиной нашего поведения свойства людей не самые важные, не выражающие их суть, а случайные, поверхностные, хотя и наиболее заметные.) На теоретическом же уровне абстрагирование — лишь начальный шаг, после которого начинается длительный и сложный процесс восхождения от абстрактного (одностороннего, но существенного) к конкретному (полному, многостороннему) знанию о предмете.
Моделирование — метод замещения изучаемого объекта подобным ему по ряду интересующих исследователя свойств и характеристик. Данные, полученные при изучении модели, затем с некоторыми поправками переносятся на реальный объект. Моделирование применяется в основном тогда, когда прямое изучение объекта либо невозможно (очевидно, что феномен «ядерной зимы» в результате массированного применения ядерного оружия кроме как на модели лучше не испытывать), либо связано с непомерными усилиями и затратами. Последствия крупных вмешательств в природные процессы (поворот рек, например) целесообразно сначала изучить на гидродинамических моделях, а потом уже экспериментировать с реальными природными объектами.
Изучать аэродинамические свойства новых конструкций самолетов или проверять их на прочность в аэродинамической трубе намного дешевле с помощью уменьшенных копий — моделей и т.д. Моделирование — метод фактически универсальный. Он может использоваться в системах самых различных уровней. Обычно выделяют такие типы моделирования, как предметное, математическое, логическое, физическое, химическое и проч. Широчайшее распространение в современных условиях получило компьютерное моделирование.
Подчеркнем еще раз, что все вышеперечисленные методы относятся к разряду общенаучных, т.е. применяемых во всех областях научного знания. Кроме них существуют и специально-научные методы, представляющие собой системы сформулированных в императивной форме принципов конкретных научных теорий.
Структура научного познания
За две с половиной тысячи лет своего существования наука превратилась в сложное, системно организованное образование с четко просматриваемой структурой. Основными элементами научного знания являются:
• твердо установленные факты;
• закономерности, обобщающие группы фактов;
• теории, как правило, представляющие собой системы закономерностей, в совокупности описывающих некий фрагмент реальности;
• методы как специфические приемы и способы исследования реальности, исходящие из особенностей и закономерностей изучаемых объектов;
• научные картины мира, рисующие обобщенные образы всей реальности, в которых сведены в некое системное единство все теории, допускающие взаимное согласование.
Главная опора, фундамент науки — это, конечно, установленные факты. Если они установлены правильно (подтверждены многочисленными свидетельствами наблюдения, экспериментов, проверок и т.д.), то считаются бесспорными и обязательными. Это — эмпирический, т.е. опытный, базис науки. Количество накопленных наукой фактов непрерывно возрастает. Естественно, они подвергаются первичному эмпирическому обобщению, приводятся в различные системы и классификации.
Обнаруженные в опыте общность фактов, их единообразие свидетельствуют о том, что найден некий эмпирический закон, общее правило, которому подчиняются непосредственно наблюдаемые явления.
Но значит ли это, что наука выполнила свою главную задачу, состоящую, как известно, в установлении законов? К сожалению, нет. Дело в том, что фиксируемые на эмпирическом уровне закономерности, как правило, мало что объясняют. Обнаружили, к примеру, древние наблюдатели, что большинство светящихся объектов на ночном небе движутся по четким кругообразным траекториям, а несколько других совершают какие-то петлеобразные движения. Общее правило для тех и других, стало быть, есть, только как его объяснить? А объяснить непросто, если не знать, что первые — это звезды, а вторые — планеты и их «неправильное» поведение в небе вызвано совместным с Землей вращением вокруг Солнца.
Кроме того, эмпирические закономерности обычно малоэври-стичны, т.е. не открывают дальнейших направлений научного поиска. Эти задачи решаются уже на другом уровне познания — теоретическом.
Проблема различения двух уровней научного познания — теоретического и эмпирического (опытного) — появляется из одной специфической особенности его организации, суть которой заключается в существовании различных типов обобщения доступного изучению материала. Наука ведь устанавливает законы. А закон есть существенная, необходимая, устойчивая, повторяющаяся связь явлений, т.е. нечто общее, а если строже — то и всеобщее для того или иного фрагмента реальности.
Общее же (или всеобщее) в вещах устанавливается путем абстрагирования, отвлечения от них тех свойств, признаков, характеристик, которые повторяются, являются сходными, одинаковыми во множестве вещей одного класса. Суть формально-логического обобщения как раз и заключается в отвлечении от предметов такой «одинаковости», инвариантности. Данный способ обобщения называют «абстрактно-всеобщим». Это связано с тем, что выделяемый общий признак может быть взят совершенно произвольно, случайно и никак не выражать сути изучаемого явления.
Например, известное античное определение человека как существа «двуногого и без перьев» в принципе применимо к любому индивиду и, следовательно, является абстрактно-общей его характеристикой. Но разве оно что-нибудь дает для понимания сущности человека и его истории? Определение же, гласящее, что чело-
век — это существо, производящее орудия труда, напротив, формально к большинству людей неприменимо. Однако именно оно позволяет построить некую теоретическую конструкцию, в общем удовлетворительно объясняющую историю становления и развития человека.
Здесь мы имеем дело уже с принципиально иным видом обобщения, позволяющим выделять всеобщее в предметах не номинально, а по существу. В этом случае всеобщее понимается не как простая одинаковость предметов, многократный повтор в них одного и того же признака, а как закономерная связь многих предметов, которая превращает их в моменты, стороны единой целостности, системы. А внутри этой системы всеобщность, т.е. принадлежность к системе, включает не только одинаковость, но и различия, и даже противоположности. Общность предметов реализуется здесь не во внешней похожести, а в единстве генезиса, общем принципе их связи и развития.
Именно эта разница в способах отыскания общего в вещах, т.е. установления закономерностей, и разводит эмпирический и теоретический уровни познания. На уровне чувственно-практического опыта (эмпирическом) возможно фиксирование только внешних общих признаков вещей и явлений. Существенные же внутренние их признаки здесь можно только угадать, схватить случайно. Объяснить же их и обосновать позволяет лишь теоретический уровень познания.
В теории происходит переорганизация, или переструктуризация, добытого эмпирического материала на основе некоторых исходных принципов. Это что-то вроде игры в детские кубики с фрагментами разных картинок. Для того чтобы беспорядочно разбросанные кубики сложились в единую картинку, нужен некий общий замысел, принцип их сложения. В детской игре этот принцип задан в виде готовой картинки-трафаретки. А вот как такие исходные принципы организации построения научного знания отыскиваются в теории — великая тайна научного творчества.
Наука потому и считается делом сложным и творческим, что от эмпирии к теории нет прямого перехода. Теория не строится путем непосредственного индуктивного обобщения опыта. Это, конечно, не означает, что теория вообще не связана с опытом. Изначальный толчок к созданию любой теоретической конструкции дает как раз практический опыт. И проверяется истинность теоретических выводов опять-таки их практическими приложениями. Однако сам процесс построения теории и ее дальнейшее развитие осуществляются от практики относительно независимо.
Итак, проблема различия теоретического и эмпирического уровней научного познания коренится в различии способов идеального воспроизведения объективной реальности, подходов к построению системного знания. Отсюда вытекают и другие, уже производные отличия этих двух уровней. За эмпирическим знанием, в частности, исторически и логически закрепилась функция сбора, накопления и первичной рациональной обработки данных опыта. Его главная задача — фиксация фактов. Объяснение же, интерпретация их — дело теории.
Различаются рассматриваемые уровни познания и по объектам исследования.Проводя исследование на эмпирическом уровне, ученый имеет дело непосредственно с природными и социальными объектами. Теория же оперирует исключительно с идеализированными объектами (материальная точка, идеальный газ, абсолютно твердое тело и проч.). Все это обусловливает и существенную разницу в применяемых методах исследования.Для эмпирического уровня обычны такие методы, как наблюдение, описание, измерение, эксперимент и др. Теория же предпочитает пользоваться аксиоматическим методом, системным, структурно-функциональным анализом, математическим моделированием и т.д.
Существуют, конечно, и методы, применяемые на всех уровнях научного познания: абстрагирование, обобщение, аналогия, анализ и синтез и др. Но все же разница в методах, применяемых на теоретическом и эмпирическом уровнях, не случайна. Более того, именно проблема метода была исходной в процессе самого осознания особенностей теоретического знания. В XVII в., в эпоху рождения классического естествознания, Ф. Бэкон и Р. Декарт сформулировали две разнонаправленные методологические программы развития науки: эмпирическую (индукционистскую) и рационалистическую (дедукциони-стскую).
Под индукцией, как мы помним, принято понимать такой способ рассуждения, при котором общий вывод делается на основе обобщения частных посылок. Проще говоря, это движение познания от частного к общему. Движение в противоположном направлении, от общего к частному, называется дедукцией.
Логика противостояния эмпиризма и рационализма в вопросе о ведущем методе получения нового знания, в общем, проста.
Эмпиризм.Действительное и хоть сколько-нибудь практичное знание о мире можно получить только из опыта, т.е. на основании наблюдений и экспериментов. А всякое наблюдение или эксперимент единичны. Поэтому единственно возможный путь познания природы — движение от частных случаев ко все более широким обобщениям, т.е. индукция. Другой же способ отыскания законов природы как бы обратный: сначала строят самые общие основания, а потом к ним приспосабливаются й посредством их проверяют частные выводы. По Ф. Бэкону, этот путь — «...матерь заблуждений и бедствие всех наук».
Рационализм.До сих пор самыми надежными и успешными были математические науки. А таковыми они стали потому, что применяют самые эффективные и достоверные методы познания: интеллектуальную интуицию и дедукцию. Интуиция позволяет усмотреть в реальности такие простые и самоочевидные истины, что усомниться в них совершенно невозможно. Дедукция же обеспечивает выведение из этих простых истин более сложного знания. И если она проводится по строгим правилам, то всегда будет приводить только к истине и никогда к заблуждениям. Индуктивные же рассуждения, конечно, тоже бывают хороши, но они никак не могут приводить ко всеобщим суждениям, в которых выражаются законы.
Эти методологические программы ныне считаются устаревшими и неадекватными. Эмпиризм недостаточен потому, что индукция и в самом деле никогда не приведет к универсальным суждениям, поскольку в большинстве ситуаций принципиально невозможно охватить все бесконечное множество частных случаев, на основе которых делаются общие выводы. И ни одна крупная современная теория не построена путем прямого индуктивного обобщения. Рационализм же оказался исчерпанным, поскольку современная наука занялась такими областями реальности (в микро- и мегамире), в которых требуемая «самоочевидность» простых истин испарилась окончательно. Да и роль опытных методов познания оказалась здесь недооцененной.
Тем не менее эти методологические программы сыграли свою важную историческую роль: во-первых, они стимулировали огромное множество конкретных научных исследований, а во-вторых, «высекли искру» некоторого понимания структуры научного познания.Выяснилось, что оно как бы «двухэтажно». И хотя занятый теорией «верхний этаж» вроде бы надстроен над «нижним» (эмпирией) и без последнего должен рассыпаться, но между ними почему-то нет прямой и удобной лестницы. Из нижнего этажа на верхний можно попасть только «скачком» в прямом и переносном смысле. При этом, как бы ни была важна база, основа (нижний эмпирический этаж нашего знания), решения, определяющие судьбу постройки, принимаются все-таки наверху, во владениях теории.
В наше время стандартная модель строения научного знаниявыглядит примерно так. Познание начинается с установления путем наблюдения или экспериментов различных фактов. Если среди этих фактов обнаруживается некая регулярность, повторяемость, то в принципе можно утверждать, что найден эмпирический закон, первичное эмпирическое обобщение. И все бы хорошо, но, как правило, рано или поздно отыскиваются такие факты, которые никак не встраиваются в обнаруженную регулярность. Тут на помощь призывается творческий интеллект ученого, его умение мысленно перестроить известную реальность так, чтобы выпадающие из общего ряда факты вписались наконец в некую единую схему и перестали противоречить найденной эмпирической закономерности.
Обнаружить эту новую схему наблюдением уже нельзя, ее нужно придумать, сотворить умозрительно, представив первоначально в виде теоретической гипотезы. Если гипотеза удачна и снимает найденное между фактами противоречие, а еще лучше — позволяет предсказывать получение новых, нетривиальных фактов, значит, родилась новая теория, найден теоретический закон.
Известно, к примеру, что эволюционная теория Ч. Дарвина долгое время находилась под угрозой краха из-за распространенных в XIX в. представлений о наследственности. Считалось, что передача наследственных признаков происходит по принципу «смешивания», т.е. родительские признаки переходят к потомству в некоем промежуточном варианте. Если скрестить, допустим, растения с белыми и красными цветками, то у полученного гибрида цветки должны быть розовыми. В большинстве случаев так оно и есть. Это эмпирически установленное обобщение на основе множества совершенно достоверных эмпирических фактов.
Но из этого, между прочим, следовало, что все наследуемые признаки при скрещивании должны усредняться. Значит, любой, даже самый выгодный для организма признак, появившийся в результате мутации (внезапного изменения наследственных структур), со временем должен исчезнуть, раствориться в популяции. А это в свою очередь доказывало, что естественный отбор работать не должен! Британский инженер Ф. Дженкин доказал это строго математически. Ч. Дарвину этот «кошмар Дженкина» отравлял жизнь с 1867 г., но убедительного ответа он так и не нашел. (Хотя ответ уже был найден. Дарвин просто о нем не знал.)
Дело в том, что из стройного ряда эмпирических фактов, рисующих убедительную в целом картину усреднения наследуемых признаков, упорно выбивались не менее четко фиксируемые эмпирические факты иного порядка. При скрещивании растений с красными и белыми цветками, пусть не часто, но все равно будут появляться гибриды с чисто белыми или чисто красными цветками. Но при усредняющем наследовании признаков такого быть не может — смешав кофе с молоком, нельзя получить черную или белую жидкость! Обрати Ч. Дарвин внимание на это противоречие, наверняка он прибавил бы себе и славу создателя генетики. Но не обратил. Как, впрочем, и большинство его современников, считавших это противоречие несущественным. И зря.
Ведь такие «выпирающие» факты портили всю убедительность эмпирического правила промежуточного характера наследования признаков. Чтобы эти факты вписать в общую картину, нужна была какая-то иная схема механизма наследования. Она не обнаруживалась прямым индуктивным обобщением фактов, не давалась непосредственному наблюдению. Ее нужно было «узреть умом», угадать, вообразить и, соответственно, сформулировать в виде теоретической гипотезы.
Эту задачу, как известно, блестяще решил Г. Мендель. Суть предложенной им гипотезы можно выразить так: наследование носит не промежуточный, а дискретный характер. Наследуемые признаки передаются дискретными частицами (сегодня мы называем их генами). Поэтому при передаче факторов наследственности от поколения к поколению идет их расщепление, а не смешивание. Эта гениально простая схема, развившаяся впоследствии в стройную теорию, объяснила разом все эмпирические факты. Наследование признаков идет в режиме расщепления, и поэтому возможно появление гибридов с «несмешивающимися» признаками. А на-
52
блюдаемое в большинстве случаев «смешивание» вызвано тем, что за наследование признака отвечает, как правило, не один, а множество генов, что и «смазывает» менделевское расщепление. Принцип естественного отбора был спасен, «кошмар Дженкина» рассеялся.
Таким образом, традиционная модель строения научного знания предполагает движение по цепочке: установление эмпирических фактов — первичное эмпирическое обобщение — обнаружение отклоняющихся от правила фактов — изобретение теоретической гипотезы с новой схемой объяснения — логический вывод (дедукция) из гипотезы всех наблюдаемых фактов, что и является ее проверкой на истинность. Подтверждение гипотезы конституирует ее в теоретический закон. Такая модель научного знания называется гипотетико-дедуктивной.Считается, что большая часть современного научного знания построена именно этим способом.
Критерии и нормы научности
Теория является высшей формой организации научного знания, дающей целостное представление о существенных связях и отношениях в какой-либо области реальности. Разработка теории сопровождается, как правило, введением понятий, фиксирующих непосредственно не наблюдаемые стороны объективной реальности. Поэтому проверка истинности теории не может быть непосредственно осуществлена прямым наблюдением и экспериментом. Такой «отрыв» теории от непосредственно наблюдаемой реальности породил в XX в. немало дискуссий на тему о том, какое же знание можно и нужно признать научным, а какому в данном статусе следует отказать. Проблема заключалась в том, что относительная независимость теоретического знания от его эмпирического базиса, свобода построения различных теоретических конструкций невольно создают иллюзию немыслимой легкости изобретения универсальных объяснительных схем и полной научной безнаказанности авторов за свои сногсшибательные идеи. Заслуженный авторитет науки зачастую используется для придания большего веса откровениям всякого рода пророков, целителей, исследователей «астральных сущностей», следов внеземных пришельцев и т.п. Внешняя наукообразная форма и использование полунаучной терминологии создают впечатление причастности к достижениям большой науки и еще не познанным тайнам всей Вселенной одновременно.
Критические замечания в адрес «нетрадиционных» воззрений отбиваются нехитрым, но надежным способом: традиционная наука по природе своей консервативна и склонна устраивать гонения на все новое и необычное: — и Джордано Бруно ведь сожгли, и Менделя не поняли и т.д. Возникает вопрос: можно ли четко отграничить псевдонаучные идеи от собственно науки?
Для этих целей разными направлениями методологии науки сформулировано несколько принципов. Один из них получил название принципа верификации:какое-либо понятие или суждение имеет значение,